These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23193311)

  • 1. Model-based vasculature extraction from optical fluorescence cryomicrotome images.
    Goyal A; Lee J; Lamata P; van den Wijngaard J; van Horssen P; Spaan J; Siebes M; Grau V; Smith NP
    IEEE Trans Med Imaging; 2013 Jan; 32(1):56-72. PubMed ID: 23193311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome.
    van Horssen P; Siebes M; Hoefer I; Spaan JA; van den Wijngaard JP
    Med Biol Eng Comput; 2010 Aug; 48(8):735-44. PubMed ID: 20574721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsphere skimming in the porcine coronary arteries: Implications for flow quantification.
    Sinclair M; Lee J; Schuster A; Chiribiri A; van den Wijngaard J; van Horssen P; Siebes M; Spaan JA; Nagel E; Smith NP
    Microvasc Res; 2015 Jul; 100():59-70. PubMed ID: 25963318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of segmented vessel size due to limited imaging resolution on coronary hyperemic flow prediction from arterial crown volume.
    van Horssen P; van Lier MG; van den Wijngaard JP; VanBavel E; Hoefer IE; Spaan JA; Siebes M
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H839-46. PubMed ID: 26825519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A full 3-D reconstruction of the entire porcine coronary vasculature.
    Kaimovitz B; Lanir Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1064-76. PubMed ID: 20622105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalisation of myocardial perfusion areas.
    Spaan JA; ter Wee R; van Teeffelen JW; Streekstra G; Siebes M; Kolyva C; Vink H; Fokkema DS; VanBavel E
    Med Biol Eng Comput; 2005 Jul; 43(4):431-5. PubMed ID: 16255423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative coronary angiography using image recovery techniques for background estimation in unsubtracted images.
    Wong JT; Kamyar F; Molloi S
    Med Phys; 2007 Oct; 34(10):4003-15. PubMed ID: 17985646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramural spatial variation of optical tissue properties measured with fluorescence microsphere images of porcine cardiac tissue.
    Goyal A; van den Wijngaard J; van Horssen P; Grau V; Spaan J; Smith N
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1408-11. PubMed ID: 19964525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A postprocessing method for compensation of scatter and collimator blurring in SPECT: a proof-of-concept study.
    Yan Y; Zeng GL
    J Nucl Med Technol; 2009 Jun; 37(2):83-90. PubMed ID: 19447851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach.
    Liu G; Yousefi S; Zhi Z; Wang RK
    Opt Express; 2011 Sep; 19(19):18135-48. PubMed ID: 21935179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based PSF and MTF estimation and validation from skeletal clinical CT images.
    Pakdel A; Mainprize JG; Robert N; Fialkov J; Whyne CM
    Med Phys; 2014 Jan; 41(1):011906. PubMed ID: 24387514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotope independent determination of PET/CT modulation transfer functions from phantom measurements on spheres.
    Prenosil GA; Klaeser B; Hentschel M; Fürstner M; Berndt M; Krause T; Weitzel T
    Med Phys; 2016 Oct; 43(10):5767. PubMed ID: 27782715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of quantitative, efficient image reconstruction for VersaPET, a compact PET system.
    Wei S; Vaska P
    Med Phys; 2020 Jul; 47(7):2852-2868. PubMed ID: 32219853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters.
    Akamatsu G; Ishikawa K; Mitsumoto K; Taniguchi T; Ohya N; Baba S; Abe K; Sasaki M
    J Nucl Med; 2012 Nov; 53(11):1716-22. PubMed ID: 22952340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of morphometry and branching angles of porcine coronary arterial tree from CT images.
    Wischgoll T; Choy JS; Kassab GS
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1949-55. PubMed ID: 19749169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical considerations for image-based PSF and blobs reconstruction in PET.
    Stute S; Comtat C
    Phys Med Biol; 2013 Jun; 58(11):3849-70. PubMed ID: 23681172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of image-based method for extraction of coronary morphometry.
    Wischgoll T; Choy JS; Ritman EL; Kassab GS
    Ann Biomed Eng; 2008 Mar; 36(3):356-68. PubMed ID: 18228141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image Restoration for Fluorescence Planar Imaging with Diffusion Model.
    Zhang X; Gong Y; Li Y; Cao X; Zhu S
    Biomed Res Int; 2017; 2017():2010512. PubMed ID: 29279843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of 3D PSFs from computed tomography reconstructed x-ray images of spherical objects and the effects of sphere radii.
    Robert N; Mainprize JG; Whyne C
    Med Phys; 2019 Nov; 46(11):4792-4802. PubMed ID: 31381159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.