These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23193320)
21. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
22. Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis. Kirsch NA; Bao X; Alibeji NA; Dicianno BE; Sharma N IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):224-232. PubMed ID: 28952946 [TBL] [Abstract][Full Text] [Related]
23. Dynamic Optimization of FES and Orthosis-Based Walking Using Simple Models. Sharma N; Mushahwar V; Stein R IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):114-26. PubMed ID: 24122568 [TBL] [Abstract][Full Text] [Related]
24. Control of stair ascent and descent with a powered transfemoral prosthesis. Lawson BE; Varol HA; Huff A; Erdemir E; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):466-73. PubMed ID: 23096120 [TBL] [Abstract][Full Text] [Related]
25. A knee and ankle flexing hybrid orthosis for paraplegic ambulation. Greene PJ; Granat MH Med Eng Phys; 2003 Sep; 25(7):539-45. PubMed ID: 12835066 [TBL] [Abstract][Full Text] [Related]
27. A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics. Kirsch N; Alibeji N; Fisher L; Gregory C; Sharma N Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2557-60. PubMed ID: 25570512 [TBL] [Abstract][Full Text] [Related]
28. Design and testing of an advanced implantable neuroprosthesis with myoelectric control. Hart RL; Bhadra N; Montague FW; Kilgore KL; Peckham PH IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):45-53. PubMed ID: 20876029 [TBL] [Abstract][Full Text] [Related]
29. A special purpose embedded system for neural machine interface for artificial legs. Zhang X; Huang H; Yang Q Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5207-10. PubMed ID: 22255511 [TBL] [Abstract][Full Text] [Related]
30. Standing after spinal cord injury with four-contact nerve-cuff electrodes for quadriceps stimulation. Fisher LE; Miller ME; Bailey SN; Davis JA; Anderson JS; Rhode L; Tyler DJ; Triolo RJ IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):473-8. PubMed ID: 18990650 [TBL] [Abstract][Full Text] [Related]
31. Optimal trajectory planning for a constrained functional electrical stimulation-based human walking. Sharma N; Stein R Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():603-7. PubMed ID: 22254382 [TBL] [Abstract][Full Text] [Related]
32. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273 [TBL] [Abstract][Full Text] [Related]
33. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot. van der Kooij H; Veneman J; Ekkelenkamp R Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801 [TBL] [Abstract][Full Text] [Related]
34. Computer added locomotion by implanted electrical stimulation in paraplegic patients (SUAW). von Wild K; Rabischong P; Brunelli G; Benichou M; Krishnan K Acta Neurochir Suppl; 2002; 79():99-104. PubMed ID: 11974998 [TBL] [Abstract][Full Text] [Related]
35. Sliding mode closed-loop control of FES: controlling the shank movement. Jezernik S; Wassink RG; Keller T IEEE Trans Biomed Eng; 2004 Feb; 51(2):263-72. PubMed ID: 14765699 [TBL] [Abstract][Full Text] [Related]
36. A foot drop correcting FES envelope design method using tibialis anterior EMG during healthy gait with a new walking speed control strategy. Chen M; Wang QB; Lou XX; Xu K; Zheng XX Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4906-9. PubMed ID: 21096659 [TBL] [Abstract][Full Text] [Related]
37. A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve. Salmons S; Jarvis JC Med Eng Phys; 2007 Jul; 29(6):728. PubMed ID: 16997607 [No Abstract] [Full Text] [Related]
38. Neural network and fuzzy control in FES-assisted locomotion for the hemiplegic. Chen YL; Chen SC; Chen WL; Hsiao CC; Kuo TS; Lai JS J Med Eng Technol; 2004; 28(1):32-8. PubMed ID: 14660183 [TBL] [Abstract][Full Text] [Related]
39. Development of body weight support gait training system using antagonistic bi-articular muscle model. Shibata Y; Imai S; Nobutomo T; Miyoshi T; Yamamoto S Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4468-71. PubMed ID: 21095773 [TBL] [Abstract][Full Text] [Related]
40. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization. Ekkachai K; Nilkhamhang I IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]