These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23194019)

  • 21. Specialized diving traits in the generalist morphology of Fulica (Aves, Rallidae).
    De Mendoza RS; Carril J; Degrange FJ; Tambussi CP
    Sci Rep; 2024 Jun; 14(1):13966. PubMed ID: 38886412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability.
    Nudds RL; Dyke GJ
    Science; 2010 May; 328(5980):887-9. PubMed ID: 20466930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maaqwi cascadensis: A large, marine diving bird (Avialae: Ornithurae) from the Upper Cretaceous of British Columbia, Canada.
    McLachlan SMS; Kaiser GW; Longrich NR
    PLoS One; 2017; 12(12):e0189473. PubMed ID: 29220405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forelimb to hindlimb shape covariance in extant hominoids and fossil hominins.
    Tallman M
    Anat Rec (Hoboken); 2013 Feb; 296(2):290-304. PubMed ID: 23175381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.
    Wang X; McGowan AJ; Dyke GJ
    PLoS One; 2011; 6(12):e28672. PubMed ID: 22163324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.
    Liu D; Chiappe LM; Serrano F; Habib M; Zhang Y; Meng Q
    PLoS One; 2017; 12(10):e0184637. PubMed ID: 29020077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal indicators of locomotor adaptations in living and extinct rodents.
    Samuels JX; Van Valkenburgh B
    J Morphol; 2008 Nov; 269(11):1387-411. PubMed ID: 18777567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The locomotion of Babakotia radofilai inferred from epiphyseal and diaphyseal morphology of the humerus and femur.
    Marchi D; Ruff CB; Capobianco A; Rafferty KL; Habib MB; Patel BA
    J Morphol; 2016 Sep; 277(9):1199-218. PubMed ID: 27324923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood flow for bone remodelling correlates with locomotion in living and extinct birds.
    Allan GH; Cassey P; Snelling EP; Maloney SK; Seymour RS
    J Exp Biol; 2014 Aug; 217(Pt 16):2956-62. PubMed ID: 24902751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Wing-Loading Correlates with Dive Performance in Birds, Suggesting a Strategy to Reduce Buoyancy.
    Lapsansky AB; Warrick DR; Tobalske BW
    Integr Comp Biol; 2022 Oct; 62(4):878-889. PubMed ID: 35810134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A morphospace-based test for competitive exclusion among flying vertebrates: did birds, bats and pterosaurs get in each other's space?
    McGowan AJ; Dyke GJ
    J Evol Biol; 2007 May; 20(3):1230-6. PubMed ID: 17465933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird.
    Wang M; Li Z; Zhou Z
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11470-11475. PubMed ID: 29073073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early hominin limb proportions.
    Richmond BG; Aiello LC; Wood BA
    J Hum Evol; 2002 Oct; 43(4):529-48. PubMed ID: 12393007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poor flight performance in deep-diving cormorants.
    Watanabe YY; Takahashi A; Sato K; Viviant M; Bost CA
    J Exp Biol; 2011 Feb; 214(Pt 3):412-21. PubMed ID: 21228200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative limb strength and locomotion in Homo habilis.
    Ruff C
    Am J Phys Anthropol; 2009 Jan; 138(1):90-100. PubMed ID: 18711733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paleontology. Flying dinos and baby birds offer new clues about how avians took wing.
    Balter M
    Science; 2012 Nov; 338(6107):591-2. PubMed ID: 23118159
    [No Abstract]   [Full Text] [Related]  

  • 39. The avian nature of the brain and inner ear of Archaeopteryx.
    Alonso PD; Milner AC; Ketcham RA; Cookson MJ; Rowe TB
    Nature; 2004 Aug; 430(7000):666-9. PubMed ID: 15295597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.