BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23194027)

  • 1. Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding.
    Miyazaki Y; Aoki M; Yano Y; Matsuzaki K
    Biochemistry; 2012 Dec; 51(51):10229-35. PubMed ID: 23194027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ganglioside GM1 binding the N-terminus of amyloid precursor protein.
    Zhang H; Ding J; Tian W; Wang L; Huang L; Ruan Y; Lu T; Sha Y; Zhang D
    Neurobiol Aging; 2009 Aug; 30(8):1245-53. PubMed ID: 18077059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes.
    Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface.
    Tamba Y; Yamazaki M
    J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of membrane curvature to the formation of pores by magainin 2.
    Matsuzaki K; Sugishita K; Ishibe N; Ueha M; Nakata S; Miyajima K; Epand RM
    Biochemistry; 1998 Aug; 37(34):11856-63. PubMed ID: 9718308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity.
    Chou HT; Wen HW; Kuo TY; Lin CC; Chen WJ
    Peptides; 2010 Oct; 31(10):1811-20. PubMed ID: 20600422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of influenza virus with gangliosides and liposomes containing gangliosides.
    Slepushkin VA; Starov AI; Bukrinskaya AG; Imbs AB; Martynova MA; Kogtev LS; Vodovozova EL; Timofeeva NG; Molotkovsky JG; Bergelson LD
    Eur J Biochem; 1988 May; 173(3):599-605. PubMed ID: 3371350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the length and flexibility of the side chain of basic amino acids on the binding of antimicrobial peptides to zwitterionic and anionic membrane model systems.
    Russell AL; Williams BC; Spuches A; Klapper D; Srouji AH; Hicks RP
    Bioorg Med Chem; 2012 Mar; 20(5):1723-39. PubMed ID: 22304850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the mechanism of antimicrobial poly(phenylene ethynylene) polyelectrolytes: interactions with phosphatidylglycerol lipid membranes.
    Ding L; Chi EY; Chemburu S; Ji E; Schanze KS; Lopez GP; Whitten DG
    Langmuir; 2009 Dec; 25(24):13742-51. PubMed ID: 20560549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action mechanism of PEGylated magainin 2 analogue peptide.
    Imura Y; Nishida M; Matsuzaki K
    Biochim Biophys Acta; 2007 Oct; 1768(10):2578-85. PubMed ID: 17662233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of choleragen and anti-ganglioside antibodies to gangliosides incorporated into preformed liposomes.
    Richards RL; Fishman PH; Moss J; Alving CR
    Biochim Biophys Acta; 1983 Sep; 733(2):249-55. PubMed ID: 6882761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes.
    Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S
    Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of gangliosides in the interaction of a growth inhibitor with mouse LM cells.
    Bascom CC; Sharifi BG; Melkerson LJ; Rintoul DA; Johnson TC
    J Cell Physiol; 1985 Dec; 125(3):427-35. PubMed ID: 4066767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa.
    Matsuzaki K; Mitani Y; Akada KY; Murase O; Yoneyama S; Zasloff M; Miyajima K
    Biochemistry; 1998 Oct; 37(43):15144-53. PubMed ID: 9790678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1. Comparison with a nonlinear theory.
    McDaniel RV; Sharp K; Brooks D; McLaughlin AC; Winiski AP; Cafiso D; McLaughlin S
    Biophys J; 1986 Mar; 49(3):741-52. PubMed ID: 3697476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers.
    Salay LC; Ferreira M; Oliveira ON; Nakaie CR; Schreier S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():95-102. PubMed ID: 22772075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.