BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23194085)

  • 41. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase.
    Song W; Yin W; Zhang Z; He P; Yang X; Zhang X
    Mikrochim Acta; 2019 Feb; 186(3):149. PubMed ID: 30712077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform.
    Gao M; Guo J; Song Y; Zhu Z; Yang CJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38356-38363. PubMed ID: 29027787
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thioflavin T as a fluorescence probe for label-free detection of T4 polynucleotide kinase/phosphatase and its inhibitors.
    Ma C; Jin S; Liu H; Xia K; Tang J; Wang K; Wang J
    Mol Cell Probes; 2015 Dec; 29(6):500-502. PubMed ID: 26577032
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot-copper nanocluster nanohybrid.
    Wang M; Kong D; Su D; Liu Y; Su X
    Nanoscale; 2019 Aug; 11(29):13903-13908. PubMed ID: 31304938
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly sensitive detection of DNA phosphorylation by counting single nanoparticles.
    Ma C; Yeung ES
    Anal Bioanal Chem; 2010 Jul; 397(6):2279-84. PubMed ID: 20512316
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A label-free fluorescent biosensor for amplified detection of T4 polynucleotide kinase activity based on rolling circle amplification and catalytic hairpin assembly.
    Cui W; Fan X; Zhao W; Liu J; Zheng L; Zhou L; Zhang J; Zhang X; Wang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121938. PubMed ID: 36209712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteriophage T4 polynucleotide kinase triggers degradation of mRNAs.
    Durand S; Richard G; Bontems F; Uzan M
    Proc Natl Acad Sci U S A; 2012 May; 109(18):7073-8. PubMed ID: 22499790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cyclic up-regulation fluorescence of pyrene excimer for studying polynucleotide kinase activity based on dual amplification.
    Xu J; Gao Y; Li B; Jin Y
    Biosens Bioelectron; 2016 Jun; 80():91-97. PubMed ID: 26807522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of DNA 3'-phosphatase activity based on exonuclease III-assisted cascade recycling amplification reaction.
    Zhang Y; Wang Y; Rizvi SFA; Zhang Y; Zhang Y; Liu X; Zhang H
    Talanta; 2019 Nov; 204():499-506. PubMed ID: 31357325
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection of polynucleotide kinase activity by using a gold electrode modified with magnetic microspheres coated with titanium dioxide nanoparticles and a DNA dendrimer.
    Wang G; Chen L; He X; Zhu Y; Zhang X
    Analyst; 2014 Aug; 139(16):3895-900. PubMed ID: 24918936
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-Time Investigation of Intracellular Polynucleotide Kinase Using a Cascaded Amplification Circuit.
    Shang J; Yu S; Chen Y; Gao Y; Hong C; Li F; Wang F
    Anal Chem; 2021 Nov; 93(46):15559-15566. PubMed ID: 34748706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exonuclease III-assisted signal amplification strategy for sensitive fluorescence detection of polynucleotide kinase based on poly(thymine)-templated copper nanoparticles.
    Zhao H; Yan Y; Chen M; Hu T; Wu K; Liu H; Ma C
    Analyst; 2019 Nov; 144(22):6689-6697. PubMed ID: 31598619
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An electrochemical biosensor for detection of T4 polynucleotide kinase activity based on host-guest recognition between phosphate pillar[5]arene and methylene blue.
    Luo D; Liu Z; Su A; Zhang Y; Wang H; Yang L; Yang W; Pang P
    Talanta; 2024 Jan; 266(Pt 1):124956. PubMed ID: 37499362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-time investigation of nucleic acids phosphorylation process using molecular beacons.
    Tang Z; Wang K; Tan W; Ma C; Li J; Liu L; Guo Q; Meng X
    Nucleic Acids Res; 2005 Jun; 33(11):e97. PubMed ID: 15961728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of T4 polynucleotide kinase activity by phosphorothioate and chimeric oligodeoxynucleotides.
    Teasdale RM; Matson SJ; Fisher E; Krieg AM
    Antisense Res Dev; 1994; 4(4):295-7. PubMed ID: 7734945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework.
    Cui L; Hu J; Li CC; Wang CM; Zhang CY
    Biosens Bioelectron; 2018 Dec; 122():168-174. PubMed ID: 30265966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme.
    Wang LK; Lima CD; Shuman S
    EMBO J; 2002 Jul; 21(14):3873-80. PubMed ID: 12110598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cadmium and copper inhibit both DNA repair activities of polynucleotide kinase.
    Whiteside JR; Box CL; McMillan TJ; Allinson SL
    DNA Repair (Amst); 2010 Jan; 9(1):83-9. PubMed ID: 19962355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Domain structure and mutational analysis of T4 polynucleotide kinase.
    Wang LK; Shuman S
    J Biol Chem; 2001 Jul; 276(29):26868-74. PubMed ID: 11335730
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensitive Autocatalytic Hybridization Circuit for Reliable
    Zhang Y; Li R; Yu S; Shang J; He Y; Wang Y; Liu X; Wang F
    Anal Chem; 2022 Oct; 94(40):13951-13957. PubMed ID: 36170650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.