These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 23194183)

  • 21. RNA-Seq transcriptome profiling of upland cotton (Gossypium hirsutum L.) root tissue under water-deficit stress.
    Bowman MJ; Park W; Bauer PJ; Udall JA; Page JT; Raney J; Scheffler BE; Jones DC; Campbell BT
    PLoS One; 2013; 8(12):e82634. PubMed ID: 24324815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress.
    Chen T; Li W; Hu X; Guo J; Liu A; Zhang B
    Plant Cell Physiol; 2015 May; 56(5):917-29. PubMed ID: 25657343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.
    Deokar AA; Kondawar V; Jain PK; Karuppayil SM; Raju NL; Vadez V; Varshney RK; Srinivasan R
    BMC Plant Biol; 2011 Apr; 11():70. PubMed ID: 21513527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.).
    Park W; Scheffler BE; Bauer PJ; Campbell BT
    BMC Plant Biol; 2012 Jun; 12():90. PubMed ID: 22703539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage.
    Zhang X; Yao D; Wang Q; Xu W; Wei Q; Wang C; Liu C; Zhang C; Yan H; Ling Y; Su Z; Li F
    PLoS One; 2013; 8(1):e54762. PubMed ID: 23382961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation.
    Hamid R; Ghorbanzadeh Z; Jacob F; Nekouei MK; Zeinalabedini M; Mardi M; Sadeghi A; Ghaffari MR
    BMC Plant Biol; 2024 May; 24(1):468. PubMed ID: 38811873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress.
    Moumeni A; Satoh K; Kondoh H; Asano T; Hosaka A; Venuprasad R; Serraj R; Kumar A; Leung H; Kikuchi S
    BMC Plant Biol; 2011 Dec; 11():174. PubMed ID: 22136218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes.
    Rahaie M; Xue GP; Naghavi MR; Alizadeh H; Schenk PM
    Plant Cell Rep; 2010 Aug; 29(8):835-44. PubMed ID: 20490502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms.
    Krugman T; Peleg Z; Quansah L; Chagué V; Korol AB; Nevo E; Saranga Y; Fait A; Chalhoub B; Fahima T
    Funct Integr Genomics; 2011 Dec; 11(4):565-83. PubMed ID: 21656015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.
    Nuruzzaman M; Sharoni AM; Satoh K; Kumar A; Leung H; Kikuchi S
    J Plant Physiol; 2014 Jan; 171(1):2-13. PubMed ID: 24189206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptomic analysis of the primary roots of Alhagi sparsifolia in response to water stress.
    Wu H; Zhang Y; Zhang W; Pei X; Zhang C; Jia S; Li W
    PLoS One; 2015; 10(3):e0120791. PubMed ID: 25822368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.
    Sun X; Luo X; Sun M; Chen C; Ding X; Wang X; Yang S; Yu Q; Jia B; Ji W; Cai H; Zhu Y
    Plant Cell Physiol; 2014 Jan; 55(1):99-118. PubMed ID: 24272249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted mining of drought stress-responsive genes from EST resources in Cleistogenes songorica.
    Zhang J; John UP; Wang Y; Li X; Gunawardana D; Polotnianka RM; Spangenberg GC; Nan Z
    J Plant Physiol; 2011 Oct; 168(15):1844-51. PubMed ID: 21684035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide analysis of the cotton G-coupled receptor proteins (GPCR) and functional analysis of GTOM1, a novel cotton GPCR gene under drought and cold stress.
    Lu P; Magwanga RO; Kirungu JN; Dong Q; Cai X; Zhou Z; Wang X; Xu Y; Hou Y; Peng R; Wang K; Liu F
    BMC Genomics; 2019 Aug; 20(1):651. PubMed ID: 31412764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional analysis of drought-induced genes in the roots of a tolerant genotype of the common bean (Phaseolus vulgaris L.).
    Recchia GH; Caldas DG; Beraldo AL; da Silva MJ; Tsai SM
    Int J Mol Sci; 2013 Mar; 14(4):7155-79. PubMed ID: 23538843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways.
    Vargas L; Santa BrĂ­gida AB; Mota Filho JP; de Carvalho TG; Rojas CA; Vaneechoutte D; Van Bel M; Farrinelli L; Ferreira PC; Vandepoele K; Hemerly AS
    PLoS One; 2014; 9(12):e114744. PubMed ID: 25489849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.
    Ding M; Jiang Y; Cao Y; Lin L; He S; Zhou W; Rong J
    Gene; 2014 Feb; 535(2):273-85. PubMed ID: 24279997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice.
    Wang D; Pan Y; Zhao X; Zhu L; Fu B; Li Z
    BMC Genomics; 2011 Mar; 12():149. PubMed ID: 21406116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.