BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23194314)

  • 1. Role of carbon-carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether.
    Beste A; Buchanan AC
    J Phys Chem A; 2012 Dec; 116(50):12242-8. PubMed ID: 23194314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of alpha/beta selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers.
    Beste A; Buchanan AC; Harrison RJ
    J Phys Chem A; 2008 Jun; 112(22):4982-8. PubMed ID: 18473447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of the phenyl-shift reaction in β-O-4 lignin model compounds: a computational study.
    Beste A; Buchanan AC
    J Org Chem; 2011 Apr; 76(7):2195-203. PubMed ID: 21381723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of the pyrolysis of phenethyl phenyl ether: computational prediction of alpha/beta-selectivities.
    Beste A; Buchanan AC; Britt PF; Hathorn BC; Harrison RJ
    J Phys Chem A; 2007 Dec; 111(48):12118-26. PubMed ID: 17990858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds.
    Younker JM; Beste A; Buchanan AC
    Chemphyschem; 2011 Dec; 12(18):3556-65. PubMed ID: 22065478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether.
    Jarvis MW; Daily JW; Carstensen HH; Dean AM; Sharma S; Dayton DC; Robichaud DJ; Nimlos MR
    J Phys Chem A; 2011 Feb; 115(4):428-38. PubMed ID: 21218825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigation of the pyrolysis product selectivity for α-hydroxy phenethyl phenyl ether and phenethyl phenyl ether: analysis of substituent effects and reactant conformer selection.
    Beste A; Buchanan AC
    J Phys Chem A; 2013 Apr; 117(15):3235-42. PubMed ID: 23514452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin.
    Wang X; Rinaldi R
    ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Ni N-heterocyclic carbene catalyst for C-O bond hydrogenolysis of diphenyl ether: a density functional study.
    Sawatlon B; Wititsuwannakul T; Tantirungrotechai Y; Surawatanawong P
    Dalton Trans; 2014 Dec; 43(48):18123-33. PubMed ID: 25355042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
    Jiang X; Lu Q; Hu B; Liu J; Dong C; Yang Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of phenethyl phenyl ether tethered in mesoporous silica. Effects of confinement and surface spacer molecules on product selectivity.
    Kidder MK; Chaffee AL; Nguyen MH; Buchanan AC
    J Org Chem; 2011 Aug; 76(15):6014-23. PubMed ID: 21696147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model compound studies of the beta-O-4 linkage in lignin: absolute rate expressions for beta-scission of phenoxyl radical from 1-phenyl-2-phenoxyethanol-1-yl radical.
    Kandanarachchi PH; Autrey T; Franz JA
    J Org Chem; 2002 Nov; 67(23):7937-45. PubMed ID: 12423121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.
    Sergeev AG; Hartwig JF
    Science; 2011 Apr; 332(6028):439-43. PubMed ID: 21512027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Inter- and Intramolecular Reactions Dominate the Formation of Products in Lignin Pyrolysis.
    Custodis VBF; Hemberger P; van Bokhoven JA
    Chemistry; 2017 Jun; 23(36):8658-8668. PubMed ID: 28386991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C assignments of the carbon atoms in the aromatic rings of lignin model compounds of the arylglycerol beta-aryl ether type.
    Bardet M; Lundquist K; Parkås J; Robert D; von Unge S
    Magn Reson Chem; 2006 Oct; 44(10):976-9. PubMed ID: 16835899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vinylation of Aryl Ether (Lignin β-O-4 Linkage) and Epoxides with Calcium Carbide through C-O Bond Cleavage.
    Teong SP; Lim J; Zhang Y
    ChemSusChem; 2017 Aug; 10(16):3198-3201. PubMed ID: 28730737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface.
    Zhou CW; Kislov VV; Mebel AM
    J Phys Chem A; 2012 Feb; 116(6):1571-85. PubMed ID: 22239650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.