BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23194347)

  • 41. EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics.
    Rallapalli G; Kemen EM; Robert-Seilaniantz A; Segonzac C; Etherington GJ; Sohn KH; MacLean D; Jones JD
    BMC Genomics; 2014 May; 15(1):341. PubMed ID: 24884414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using microarray-based subtyping methods for breast cancer in the era of high-throughput RNA sequencing.
    Pedersen CB; Nielsen FC; Rossing M; Olsen LR
    Mol Oncol; 2018 Dec; 12(12):2136-2146. PubMed ID: 30289602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of mRNA sequencing (RNA-Seq) library preparation methods for transcriptome analysis.
    Ura H; Togi S; Niida Y
    BMC Genomics; 2022 Apr; 23(1):303. PubMed ID: 35418012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.
    Xu G; Strong MJ; Lacey MR; Baribault C; Flemington EK; Taylor CM
    PLoS One; 2014; 9(2):e89445. PubMed ID: 24586784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-platform transcriptomic profiling of the response to recombinant human erythropoietin.
    Wang G; Kitaoka T; Crawford A; Mao Q; Hesketh A; Guppy FM; Ash GI; Liu J; Gerstein MB; Pitsiladis YP
    Sci Rep; 2021 Nov; 11(1):21705. PubMed ID: 34737331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA-Seq versus oligonucleotide array assessment of dose-dependent TCDD-elicited hepatic gene expression in mice.
    Nault R; Fader KA; Zacharewski T
    BMC Genomics; 2015 May; 16(1):373. PubMed ID: 25958198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methods to Study Long Noncoding RNA Expression and Dynamics in Zebrafish Using RNA Sequencing.
    Mathew S; Sivadas A; Sehgal P; Kaushik K; Vellarikkal SK; Scaria V; Sivasubbu S
    Methods Mol Biol; 2019; 1912():77-110. PubMed ID: 30635891
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of RNA sequencing to evaluate rheumatic disease patients.
    Giannopoulou EG; Elemento O; Ivashkiv LB
    Arthritis Res Ther; 2015 Jul; 17(1):167. PubMed ID: 26126608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of ChIP-Seq and RNA-Seq Data with BioWardrobe.
    Vallabh S; Kartashov AV; Barski A
    Methods Mol Biol; 2018; 1783():343-360. PubMed ID: 29767371
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Processing and Analysis of RNA-seq Data from Public Resources.
    Zoabi Y; Shomron N
    Methods Mol Biol; 2021; 2243():81-94. PubMed ID: 33606253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MicroRNA Expression Analysis: Next-Generation Sequencing.
    Liu P
    Methods Mol Biol; 2018; 1783():171-183. PubMed ID: 29767362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing.
    Fan X; Tang D; Liao Y; Li P; Zhang Y; Wang M; Liang F; Wang X; Gao Y; Wen L; Wang D; Wang Y; Tang F
    PLoS Biol; 2020 Dec; 18(12):e3001017. PubMed ID: 33378329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples.
    Nazarov PV; Muller A; Kaoma T; Nicot N; Maximo C; Birembaut P; Tran NL; Dittmar G; Vallar L
    BMC Genomics; 2017 Jun; 18(1):443. PubMed ID: 28587590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whole-Transcriptome Analysis by RNA Sequencing for Genetic Diagnosis of Mendelian Skin Disorders in the Context of Consanguinity.
    Youssefian L; Saeidian AH; Palizban F; Bagherieh A; Abdollahimajd F; Sotoudeh S; Mozafari N; Farahani RA; Mahmoudi H; Babashah S; Zabihi M; Zeinali S; Fortina P; Salas-Alanis JC; South AP; Vahidnezhad H; Uitto J
    Clin Chem; 2021 Jun; 67(6):876-888. PubMed ID: 33969388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling.
    Thiagarajan RD; Cloonan N; Gardiner BB; Mercer TR; Kolle G; Nourbakhsh E; Wani S; Tang D; Krishnan K; Georgas KM; Rumballe BA; Chiu HS; Steen JA; Mattick JS; Little MH; Grimmond SM
    BMC Genomics; 2011 Sep; 12():441. PubMed ID: 21888672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptomics technologies.
    Lowe R; Shirley N; Bleackley M; Dolan S; Shafee T
    PLoS Comput Biol; 2017 May; 13(5):e1005457. PubMed ID: 28545146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multiplex RNA-seq strategy to profile poly(A+) RNA: application to analysis of transcription response and 3' end formation.
    Fox-Walsh K; Davis-Turak J; Zhou Y; Li H; Fu XD
    Genomics; 2011 Oct; 98(4):266-71. PubMed ID: 21515359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA-Seq for transcriptome analysis in non-model plants.
    Garg R; Jain M
    Methods Mol Biol; 2013; 1069():43-58. PubMed ID: 23996307
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A high-throughput SNP discovery strategy for RNA-seq data.
    Zhao Y; Wang K; Wang WL; Yin TT; Dong WQ; Xu CJ
    BMC Genomics; 2019 Feb; 20(1):160. PubMed ID: 30813897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.