These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23194397)

  • 1. Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability.
    Jagannathan R; Abraham PM; Poddar P
    J Phys Chem B; 2012 Dec; 116(50):14533-40. PubMed ID: 23194397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An understanding of the modulation of photophysical properties of curcumin inside a micelle formed by an ionic liquid: a new possibility of tunable drug delivery system.
    Ghatak C; Rao VG; Mandal S; Ghosh S; Sarkar N
    J Phys Chem B; 2012 Mar; 116(10):3369-79. PubMed ID: 22324726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability.
    Manju S; Sreenivasan K
    J Colloid Interface Sci; 2011 Jul; 359(1):318-25. PubMed ID: 21492865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keto-Enol Tautomerism of Temperature and pH Sensitive Hydrated Curcumin Nanoparticles: Their Role as Nanoreactors and Compatibility with Blood Cells.
    Kaur R; Khullar P; Mahal A; Gupta A; Singh N; Ahluwalia GK; Bakshi MS
    J Agric Food Chem; 2018 Nov; 66(45):11974-11980. PubMed ID: 30359007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII.
    Tønnesen HH
    Pharmazie; 2002 Dec; 57(12):820-4. PubMed ID: 12561244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation.
    Singh DK; Jagannathan R; Khandelwal P; Abraham PM; Poddar P
    Nanoscale; 2013 Mar; 5(5):1882-93. PubMed ID: 23348618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase behavior and oral bioavailability of amorphous Curcumin.
    Pawar YB; Shete G; Popat D; Bansal AK
    Eur J Pharm Sci; 2012 Aug; 47(1):56-64. PubMed ID: 22609283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.
    Kumar S; Kesharwani SS; Mathur H; Tyagi M; Bhat GJ; Tummala H
    Eur J Pharm Sci; 2016 Jan; 82():86-96. PubMed ID: 26588875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation.
    Mohanty C; Sahoo SK
    Biomaterials; 2010 Sep; 31(25):6597-611. PubMed ID: 20553984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the preparation of curcumin inclusion complex and its stability].
    Gao ZS; Fu YX; Wang JD
    Zhong Yao Cai; 2011 Oct; 34(10):1615-7. PubMed ID: 22372155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-state dynamics of bis-dehydroxycurcumin carboxylic acid, a water-soluble derivative of the photosensitizer curcumin.
    Nardo L; Maspero A; Selva M; Bondani M; Palmisano G; Ferrari E; Saladini M
    J Phys Chem A; 2012 Sep; 116(37):9321-30. PubMed ID: 22934679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Soluble Pd
    Bhat IA; Jain R; Siddiqui MM; Saini DK; Mukherjee PS
    Inorg Chem; 2017 May; 56(9):5352-5360. PubMed ID: 28394128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment.
    Kharat M; Du Z; Zhang G; McClements DJ
    J Agric Food Chem; 2017 Mar; 65(8):1525-1532. PubMed ID: 27935709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural spectroscopy and dynamics of inter- and intramolecular H-bonding interactions of topotecan, a potent anticancer drug, in organic solvents and in aqueous solution.
    di Nunzio MR; Wang Y; Douhal A
    J Phys Chem B; 2012 Jun; 116(25):7522-30. PubMed ID: 22662747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems.
    Cui J; Yu B; Zhao Y; Zhu W; Li H; Lou H; Zhai G
    Int J Pharm; 2009 Apr; 371(1-2):148-55. PubMed ID: 19124065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition.
    Bernabé-Pineda M; Ramírez-Silva MT; Romero-Romo M; González-Vergara E; Rojas-Hernández A
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1091-7. PubMed ID: 15084328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of curcumin in different solvent and solution media: UV-visible and steady-state fluorescence spectral study.
    Mondal S; Ghosh S; Moulik SP
    J Photochem Photobiol B; 2016 May; 158():212-8. PubMed ID: 26985735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation into the effect of the structure of bile salt aggregates on the binding interactions and ESIHT dynamics of curcumin: a photophysical approach to probe bile salt aggregates as a potential drug carrier.
    Mandal S; Ghosh S; Banik D; Banerjee C; Kuchlyan J; Sarkar N
    J Phys Chem B; 2013 Nov; 117(44):13795-807. PubMed ID: 24102639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer's disease.
    Yanagisawa D; Shirai N; Amatsubo T; Taguchi H; Hirao K; Urushitani M; Morikawa S; Inubushi T; Kato M; Kato F; Morino K; Kimura H; Nakano I; Yoshida C; Okada T; Sano M; Wada Y; Wada KN; Yamamoto A; Tooyama I
    Biomaterials; 2010 May; 31(14):4179-85. PubMed ID: 20181392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine.
    Pérez-Lara A; Ausili A; Aranda FJ; de Godos A; Torrecillas A; Corbalán-García S; Gómez-Fernández JC
    J Phys Chem B; 2010 Aug; 114(30):9778-86. PubMed ID: 20666521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.