These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23194439)

  • 1. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism.
    Darwiche A; Marino C; Sougrati MT; Fraisse B; Stievano L; Monconduit L
    J Am Chem Soc; 2012 Dec; 134(51):20805-11. PubMed ID: 23194439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries.
    Meng W; Guo M; Chen J; Li D; Wang Z; Yang F
    Nanotechnology; 2020 Apr; 31(17):175401. PubMed ID: 31899895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries.
    Hong KS; Nam DH; Lim SJ; Sohn D; Kim TH; Kwon H
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17264-71. PubMed ID: 26185914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.
    Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the beneficial effect of vinylene carbonate on the electrochemistry of antimony electrodes in lithium batteries.
    Martín F; Morales J; Sánchez L
    Chemphyschem; 2008 Dec; 9(17):2610-7. PubMed ID: 18988210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous Processing of Na
    Dall'Asta V; Buchholz D; Chagas LG; Dou X; Ferrara C; Quartarone E; Tealdi C; Passerini S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34891-34899. PubMed ID: 28914523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full structural and electrochemical characterization of Li2Ti6O13 as anode for Li-ion batteries.
    Pérez-Flores JC; Baehtz C; Hoelzel M; Kuhn A; García-Alvarado F
    Phys Chem Chem Phys; 2012 Feb; 14(8):2892-9. PubMed ID: 22258437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO
    Surendran A; Enale H; Thottungal A; Sarapulova A; Knapp M; Nishanthi ST; Dixon D; Bhaskar A
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7856-7868. PubMed ID: 35107246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.
    Allan PK; Griffin JM; Darwiche A; Borkiewicz OJ; Wiaderek KM; Chapman KW; Morris AJ; Chupas PJ; Monconduit L; Grey CP
    J Am Chem Soc; 2016 Feb; 138(7):2352-65. PubMed ID: 26824406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries.
    Fang Y; Liu Q; Xiao L; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17977-84. PubMed ID: 26207862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries.
    Song W; Ji X; Pan C; Zhu Y; Chen Q; Banks CE
    Phys Chem Chem Phys; 2013 Sep; 15(34):14357-63. PubMed ID: 23877439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexagonal-shaped tin glycolate particles: a preliminary study of their suitability as li-ion insertion electrodes.
    Ng SH; Chew SY; Dos Santos DI; Chen J; Wang JZ; Dou SX; Liu HK
    Chem Asian J; 2008 May; 3(5):854-61. PubMed ID: 18383054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An advanced cathode for Na-ion batteries with high rate and excellent structural stability.
    Lee DH; Xu J; Meng YS
    Phys Chem Chem Phys; 2013 Mar; 15(9):3304-12. PubMed ID: 23361584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries.
    Qian J; Qiao D; Ai X; Cao Y; Yang H
    Chem Commun (Camb); 2012 Sep; 48(71):8931-3. PubMed ID: 22850700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Alloying Strategy for Exceptional Potassium Ion Batteries.
    Wang J; Fan L; Liu Z; Chen S; Zhang Q; Wang L; Yang H; Yu X; Lu B
    ACS Nano; 2019 Mar; 13(3):3703-3713. PubMed ID: 30811177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space.
    Hertzberg B; Alexeev A; Yushin G
    J Am Chem Soc; 2010 Jun; 132(25):8548-9. PubMed ID: 20527882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.