These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 23194514)
1. Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides. Doyen A; Husson E; Bazinet L Food Chem; 2013 Feb; 136(3-4):1193-202. PubMed ID: 23194514 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. Poulin JF; Amiot J; Bazinet L J Biotechnol; 2006 May; 123(3):314-28. PubMed ID: 16412527 [TBL] [Abstract][Full Text] [Related]
3. Impact of ultrafiltration membrane material on Peptide separation from a snow crab byproduct hydrolysate by electrodialysis with ultrafiltration membranes. Doyen A; Beaulieu L; Saucier L; Pouliot Y; Bazinet L J Agric Food Chem; 2011 Mar; 59(5):1784-92. PubMed ID: 21254777 [TBL] [Abstract][Full Text] [Related]
4. Impact of feed solution flow rate on Peptide fractionation by electrodialysis with ultrafiltration membrane. Poulin JF; Amiot J; Bazinet L J Agric Food Chem; 2008 Mar; 56(6):2007-11. PubMed ID: 18281941 [TBL] [Abstract][Full Text] [Related]
5. Emulsification of chemical and enzymatic hydrolysates of beta-lactoglobulin: characterization of the peptides adsorbed at the interface. Rahali V; Chobert JM; Haertlé T; Guéguen J Nahrung; 2000 Apr; 44(2):89-95. PubMed ID: 10795574 [TBL] [Abstract][Full Text] [Related]
6. Effect of beta-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides. Hernández-Ledesma B; Ramos M; Recio I; Amigo L J Chromatogr A; 2006 May; 1116(1-2):31-7. PubMed ID: 16580004 [TBL] [Abstract][Full Text] [Related]
7. Peptides surviving the simulated gastrointestinal digestion of milk proteins: biological and toxicological implications. Picariello G; Ferranti P; Fierro O; Mamone G; Caira S; Di Luccia A; Monica S; Addeo F J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb; 878(3-4):295-308. PubMed ID: 19962948 [TBL] [Abstract][Full Text] [Related]
8. Effect of genetic variation on the tryptic hydrolysis of bovine beta-lactoglobulin A, B, and C. Creamer LK; Nilsson HC; Paulsson MA; Coker CJ; Hill JP; Jiménez-Flores R J Dairy Sci; 2004 Dec; 87(12):4023-32. PubMed ID: 15545362 [TBL] [Abstract][Full Text] [Related]
9. Effect of exopolysaccharides on the hydrolysis of beta-lactoglobulin by Lactobacillus acidophilus CRL 636 in an in vitro gastric/pancreatic system. Pescuma M; Hébert EM; Dalgalarrondo M; Haertlé T; Mozzi F; Chobert JM; Font de Valdez G J Agric Food Chem; 2009 Jun; 57(12):5571-7. PubMed ID: 19469473 [TBL] [Abstract][Full Text] [Related]
11. Continuous enzymatic hydrolysis of beta-casein and isoelectric collection of some of the biologically active peptides in an electric field. Righetti PG; Nembri F; Bossi A; Mortarino M Biotechnol Prog; 1997; 13(3):258-64. PubMed ID: 9190076 [TBL] [Abstract][Full Text] [Related]
12. Peptides obtained by tryptic hydrolysis of bovine beta-lactoglobulin induce specific oral tolerance in mice. Pecquet S; Bovetto L; Maynard F; Fritsché R J Allergy Clin Immunol; 2000 Mar; 105(3):514-21. PubMed ID: 10719302 [TBL] [Abstract][Full Text] [Related]
13. Beta-lactoglobulin as source of bioactive peptides. Hernández-Ledesma B; Recio I; Amigo L Amino Acids; 2008 Aug; 35(2):257-65. PubMed ID: 17726638 [TBL] [Abstract][Full Text] [Related]
14. Purification of goat beta-lactoglobulin from whey by an ultrafiltration membrane enzymic reactor. Sannier F; Bordenave S; Piot JM J Dairy Res; 2000 Feb; 67(1):43-51. PubMed ID: 10717842 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the effect of temperature changes combined with different alkaline pH on the β-lactoglobulin trypsin hydrolysis pattern using MALDI-TOF-MS/MS. Chelulei Cheison S; Brand J; Leeb E; Kulozik U J Agric Food Chem; 2011 Mar; 59(5):1572-81. PubMed ID: 21319805 [TBL] [Abstract][Full Text] [Related]
16. Selective separation of cationic peptides from a tryptic hydrolysate of beta-lactoglobulin by electrofiltration. Lapointe JF; Gauthier SF; Pouliot Y; Bouchard C Biotechnol Bioeng; 2006 Jun; 94(2):223-33. PubMed ID: 16596667 [TBL] [Abstract][Full Text] [Related]
17. Effect of physicochemical conditions on peptide-peptide interactions in a tryptic hydrolysate of beta-lactoglobulin and identification of aggregating peptides. Groleau PE; Morin P; Gauthier SF; Pouliot Y J Agric Food Chem; 2003 Jul; 51(15):4370-5. PubMed ID: 12848512 [TBL] [Abstract][Full Text] [Related]
18. In vitro generation and stability of the lactokinin beta-lactoglobulin fragment (142-148). Walsh DJ; Bernard H; Murray BA; MacDonald J; Pentzien AK; Wright GA; Wal JM; Struthers AD; Meisel H; Fitzgerald RJ J Dairy Sci; 2004 Nov; 87(11):3845-57. PubMed ID: 15483169 [TBL] [Abstract][Full Text] [Related]
19. Influence of denaturation and aggregation of β-lactoglobulin on its tryptic hydrolysis and the release of functional peptides. Leeb E; Götz A; Letzel T; Cheison SC; Kulozik U Food Chem; 2015 Nov; 187():545-54. PubMed ID: 25977062 [TBL] [Abstract][Full Text] [Related]
20. Protein-phenolic interaction of tryptic digests of β-lactoglobulin and cloudberry ellagitannin. Wang B; Koivumäki T; Kylli P; Heinonen M; Poutanen M J Agric Food Chem; 2014 Jun; 62(22):5028-37. PubMed ID: 24828893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]