These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 23194820)

  • 1. Group information guided ICA for fMRI data analysis.
    Du Y; Fan Y
    Neuroimage; 2013 Apr; 69():157-97. PubMed ID: 23194820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A K-means multivariate approach for clustering independent components from magnetoencephalographic data.
    Spadone S; de Pasquale F; Mantini D; Della Penna S
    Neuroimage; 2012 Sep; 62(3):1912-23. PubMed ID: 22634861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of multi-subject ICA methods for analysis of fMRI data.
    Erhardt EB; Rachakonda S; Bedrick EJ; Allen EA; Adali T; Calhoun VD
    Hum Brain Mapp; 2011 Dec; 32(12):2075-95. PubMed ID: 21162045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection.
    Long Z; Li R; Wen X; Jin Z; Chen K; Yao L
    Magn Reson Imaging; 2013 Jan; 31(1):60-74. PubMed ID: 22898701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A group model for stable multi-subject ICA on fMRI datasets.
    Varoquaux G; Sadaghiani S; Pinel P; Kleinschmidt A; Poline JB; Thirion B
    Neuroimage; 2010 May; 51(1):288-99. PubMed ID: 20153834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data.
    Du Y; Lin D; Yu Q; Sui J; Chen J; Rachakonda S; Adali T; Calhoun VD
    Front Neurosci; 2017; 11():267. PubMed ID: 28579940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fMRI group data analysis method based on data-driven reference extracting from group subjects.
    Shi Y; Zeng W; Wang N; Chen D
    Comput Methods Programs Biomed; 2015 Dec; 122(3):362-71. PubMed ID: 26387634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis.
    Zhang H; Zuo XN; Ma SY; Zang YF; Milham MP; Zhu CZ
    Neuroimage; 2010 Jul; 51(4):1414-24. PubMed ID: 20338245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validating the performance of one-time decomposition for fMRI analysis using ICA with automatic target generation process.
    Yao S; Zeng W; Wang N; Chen L
    Magn Reson Imaging; 2013 Jul; 31(6):970-5. PubMed ID: 23587929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-free fMRI group analysis using FENICA.
    Schöpf V; Windischberger C; Robinson S; Kasess CH; Fischmeister FP; Lanzenberger R; Albrecht J; Kleemann AM; Kopietz R; Wiesmann M; Moser E
    Neuroimage; 2011 Mar; 55(1):185-93. PubMed ID: 21078400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis.
    Shi Y; Zeng W; Wang N
    Comput Methods Programs Biomed; 2017 Sep; 148():137-151. PubMed ID: 28774436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI.
    Esposito F; Aragri A; Pesaresi I; Cirillo S; Tedeschi G; Marciano E; Goebel R; Di Salle F
    Magn Reson Imaging; 2008 Sep; 26(7):905-13. PubMed ID: 18486388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI.
    Alkan Y; Biswal BB; Taylor PA; Alvarez TL
    Vis Neurosci; 2011 May; 28(3):247-61. PubMed ID: 21554775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization.
    Brookings T; Ortigue S; Grafton S; Carlson J
    Neuroimage; 2009 Jan; 44(2):411-20. PubMed ID: 18845263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches.
    Du Y; Allen EA; He H; Sui J; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1026-9. PubMed ID: 25570136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis.
    Smolders A; De Martino F; Staeren N; Scheunders P; Sijbers J; Goebel R; Formisano E
    Magn Reson Imaging; 2007 Jul; 25(6):860-8. PubMed ID: 17482412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
    Liao W; Chen H; Yang Q; Lei X
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1472-83. PubMed ID: 18815099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for reducing large fMRI data sets for independent component analysis.
    Wang Z; Wang J; Calhoun V; Rao H; Detre JA; Childress AR
    Magn Reson Imaging; 2006 Jun; 24(5):591-6. PubMed ID: 16735180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling state-related fMRI activity using change-point theory.
    Lindquist MA; Waugh C; Wager TD
    Neuroimage; 2007 Apr; 35(3):1125-41. PubMed ID: 17360198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.