These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 23194897)
1. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Picas L; Milhiet PE; Hernández-Borrell J Chem Phys Lipids; 2012 Dec; 165(8):845-60. PubMed ID: 23194897 [TBL] [Abstract][Full Text] [Related]
2. Direct correlation of structures and nanomechanical properties of multicomponent lipid bilayers. Sullan RM; Li JK; Zou S Langmuir; 2009 Jul; 25(13):7471-7. PubMed ID: 19292499 [TBL] [Abstract][Full Text] [Related]
3. Real-time atomic force microscopy reveals cytochrome c-induced alterations in neutral lipid bilayers. Morandat S; El Kirat K Langmuir; 2007 Oct; 23(22):10929-32. PubMed ID: 17887784 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous in situ total internal reflectance fluorescence/atomic force microscopy studies of DPPC/dPOPC microdomains in supported planar lipid bilayers. Shaw JE; Slade A; Yip CM J Am Chem Soc; 2003 Oct; 125(39):11838-9. PubMed ID: 14505404 [TBL] [Abstract][Full Text] [Related]
5. Impact of galactosylceramides on the nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study. Gumí-Audenis B; Sanz F; Giannotti MI Soft Matter; 2015 Jul; 11(27):5447-54. PubMed ID: 26058499 [TBL] [Abstract][Full Text] [Related]
6. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. Andre G; Brasseur R; Dufrêne YF J Mol Recognit; 2007; 20(6):538-45. PubMed ID: 17891753 [TBL] [Abstract][Full Text] [Related]
7. Structural impact of cations on lipid bilayer models: nanomechanical properties by AFM-force spectroscopy. Redondo-Morata L; Giannotti MI; Sanz F Mol Membr Biol; 2014 Feb; 31(1):17-28. PubMed ID: 24341385 [TBL] [Abstract][Full Text] [Related]
8. Chitosan-induced restructuration of a mica-supported phospholipid bilayer: an atomic force microscopy study. Fang N; Chan V Biomacromolecules; 2003; 4(6):1596-604. PubMed ID: 14606885 [TBL] [Abstract][Full Text] [Related]
9. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy. Wang T; Shogomori H; Hara M; Yamada T; Kobayashi T Biochemistry; 2012 Jan; 51(1):74-82. PubMed ID: 22148674 [TBL] [Abstract][Full Text] [Related]
10. Atomic force microscopy of lipid domains in supported model membranes. Burns AR Methods Mol Biol; 2007; 398():263-82. PubMed ID: 18214386 [TBL] [Abstract][Full Text] [Related]
11. Titration force microscopy on supported lipid bilayers. Garcia-Manyes S; Gorostiza P; Sanz F Anal Chem; 2006 Jan; 78(1):61-70. PubMed ID: 16383311 [TBL] [Abstract][Full Text] [Related]
12. Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. Redondo-Morata L; Giannotti MI; Sanz F Langmuir; 2012 Sep; 28(35):12851-60. PubMed ID: 22873775 [TBL] [Abstract][Full Text] [Related]
13. Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy. Morandat S; El Kirat K Colloids Surf B Biointerfaces; 2007 Apr; 55(2):179-84. PubMed ID: 17207975 [TBL] [Abstract][Full Text] [Related]
14. Force spectroscopy as a tool to investigate the properties of supported lipid membranes. Canale C; Jacono M; Diaspro A; Dante S Microsc Res Tech; 2010 Oct; 73(10):965-72. PubMed ID: 20232466 [TBL] [Abstract][Full Text] [Related]
15. Lipid domains in supported lipid bilayer for atomic force microscopy. Lin WC; Blanchette CD; Ratto TV; Longo ML Methods Mol Biol; 2007; 400():503-13. PubMed ID: 17951756 [TBL] [Abstract][Full Text] [Related]