These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 23195323)

  • 1. Growth requirements of a new food-vacuole-less mutant of Tetrahymena.
    Tiedtke A; Hünseler P; Rasmussen L
    Eur J Protistol; 1988 Oct; 23(4):350-3. PubMed ID: 23195323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid hydrolases and their release in food vacuole-less mutants of Tetrahymena thermophila.
    Silberstein GB
    J Protozool; 1979 Aug; 26(3):519-24. PubMed ID: 395296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineating cellular interactions between ciliates and fish by co-culturing Tetrahymena thermophila with fish cells.
    Pinheiro MD; Bols NC
    Cell Biol Int; 2014 Oct; 38(10):1138-47. PubMed ID: 24801100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mutant of Tetrahymena thermophila with a partial mirror-image duplication of cell surface pattern. I. Analysis of the phenotype.
    Jerka-Dziadosz M; Frankel J
    J Embryol Exp Morphol; 1979 Jan; 49():167-202. PubMed ID: 448267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of iron complexes in an animal cell.
    Rasmussen L; Toftlund H; Suhr-Jessen P
    J Cell Physiol; 1985 Jan; 122(1):155-8. PubMed ID: 3965481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual capacity for nutrient uptake in Tetrahymena. V. Utilization of amino acids and proteins.
    Orias E; Rasmussen L
    J Cell Sci; 1979 Apr; 36():343-53. PubMed ID: 110820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutants of TETRAHYMENA THERMOPHILA with Temperature-Sensitive Food Vacuole Formation. I. Isolation and Genetic Characterization.
    Suhr-Jessen PB; Orias E
    Genetics; 1979 Aug; 92(4):1061-77. PubMed ID: 17248939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuole segregation in the Saccharomyces cerevisiae vac2-1 mutant: structural and biochemical quantification of the segregation defect and formation of new vacuoles.
    Gomes De Mesquita DS; Shaw J; Grimbergen JA; Buys MA; Dewi L; Woldringh CL
    Yeast; 1997 Sep; 13(11):999-1008. PubMed ID: 9290204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Tetrahymena thermophila to study the role of protozoa in inactivation of viruses in water.
    Pinheiro MD; Power ME; Butler BJ; Dayeh VR; Slawson R; Lee LE; Lynn DH; Bols NC
    Appl Environ Microbiol; 2007 Jan; 73(2):643-9. PubMed ID: 17114327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic trapping of Tetrahymena thermophila for the long-term monitoring of cell behaviors.
    Kumano I; Hosoda K; Suzuki H; Hirata K; Yomo T
    Lab Chip; 2012 Sep; 12(18):3451-7. PubMed ID: 22825740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of fission line expression on the number and positioning of oral primordia in the cdaA1 mutant of Tetrahymena thermophila.
    Kaczanowska J; Buzanska L; Frontczak M
    Dev Genet; 1992; 13(3):216-22. PubMed ID: 1499162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of palmatine on Tetrahymena thermophila BF5 growth investigated by microcalorimetry.
    Kong WJ; Zhao YL; Xiao XH; Li ZL; Ren YS
    J Hazard Mater; 2009 Sep; 168(2-3):609-13. PubMed ID: 19286310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gliding Tetrahymena thermophila: Oriented chemokinesis in a ciliate.
    Leick V
    Eur J Protistol; 1988 Oct; 23(4):354-60. PubMed ID: 23195324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ingestion, cytotoxicity, and early morphological effects of asbestos on Tetrahymena.
    Hjelm KK
    J Environ Pathol Toxicol Oncol; 1988; 8(7 Spec No):15-26. PubMed ID: 2849651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of Tetrahymena thermophila mutant cell line for removal of cholesterol from milk.
    Gentili HG; Noseda DG; Nani ML; Nusblat A; Tiedtke A; Nudel CB; Florin-Christensen J
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):776-82. PubMed ID: 17123075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation of Tetrahymena thermophila to bulk and nano-TiO2 particles by changes in membrane fatty acids saturation.
    Rajapakse K; Drobne D; Valant J; Vodovnik M; Levart A; Marinsek-Logar R
    J Hazard Mater; 2012 Jun; 221-222():199-205. PubMed ID: 22551634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidase activity in Tetrahymena.
    Zdanowski MK; Rasmussen L
    J Cell Physiol; 1979 Sep; 100(3):407-11. PubMed ID: 489666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and functional evolution of Tetrahymena metallothioneins: new insights into the gene family of Tetrahymena thermophila.
    Santovito G; Formigari A; Boldrin F; Piccinni E
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Jan; 144(4):391-7. PubMed ID: 17208053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of properties of cilia using Tetrahymena thermophila.
    Rajagopalan V; Corpuz EO; Hubenschmidt MJ; Townsend CR; Asai DJ; Wilkes DE
    Methods Mol Biol; 2009; 586():283-99. PubMed ID: 19768437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrahymena: growth without phagocytosis.
    Basmussen L; Orias E
    Science; 1975 Oct; 190(4213):464-5. PubMed ID: 1166313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.