BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2319592)

  • 21. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron.
    Parker R; Siliciano PG
    Nature; 1993 Feb; 361(6413):660-2. PubMed ID: 8437627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GAPDH enhances group II intron splicing in vitro.
    Böck-Taferner P; Wank H
    Biol Chem; 2004 Jul; 385(7):615-21. PubMed ID: 15318810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Restoration of the self-splicing activity of a defective group II intron by a small trans-acting RNA.
    Suchy M; Schmelzer C
    J Mol Biol; 1991 Nov; 222(2):179-87. PubMed ID: 1960721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-splicing of the mobile group II intron of the filamentous fungus Podospora anserina (COI I1) in vitro.
    Schmidt U; Riederer B; Mörl M; Schmelzer C; Stahl U
    EMBO J; 1990 Jul; 9(7):2289-98. PubMed ID: 2162769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro.
    Mörl M; Schmelzer C
    Cell; 1990 Feb; 60(4):629-36. PubMed ID: 2406027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA splicing in higher plant mitochondria: determination of functional elements in group II intron from a chimeric cox II gene in electroporated wheat mitochondria.
    Farré JC; Araya A
    Plant J; 2002 Jan; 29(2):203-13. PubMed ID: 11851920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Domains 2 and 3 interact to form critical elements of the group II intron active site.
    Fedorova O; Mitros T; Pyle AM
    J Mol Biol; 2003 Jul; 330(2):197-209. PubMed ID: 12823961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fate of the junction phosphate in alternating forward and reverse self-splicing reactions of group II intron RNA.
    Müller MW; Stocker P; Hetzer M; Schweyen RJ
    J Mol Biol; 1991 Nov; 222(2):145-54. PubMed ID: 1720462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.
    McNeil BA; Zimmerly S
    RNA; 2014 Jun; 20(6):855-66. PubMed ID: 24751650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An in vitro peptide complementation assay for CYT-18-dependent group I intron splicing reveals a new role for the N-terminus.
    Geng C; Paukstelis PJ
    Biochemistry; 2014 Mar; 53(8):1311-9. PubMed ID: 24520960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transitions between the steps of forward and reverse splicing of group IIC introns.
    Smathers CM; Robart AR
    RNA; 2020 May; 26(5):664-673. PubMed ID: 32127385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-function relationships in a self-splicing group II intron: a large part of domain II of the mitochondrial intron aI5 is not essential for self-splicing.
    Kwakman JH; Konings D; Pel HJ; Grivell LA
    Nucleic Acids Res; 1989 Jun; 17(11):4205-16. PubMed ID: 2472604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions.
    Podar M; Perlman PS; Padgett RA
    Mol Cell Biol; 1995 Aug; 15(8):4466-78. PubMed ID: 7542746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Group II introns in wheat mitochondria have degenerate structural features and varied splicing pathways.
    Ngu M; Massel K; Bonen L
    Int J Biochem Cell Biol; 2017 Oct; 91(Pt B):156-167. PubMed ID: 28495309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage.
    Hertweck M; Mueller MW
    Eur J Biochem; 2001 Sep; 268(17):4610-20. PubMed ID: 11531997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicted group II intron lineages E and F comprise catalytically active ribozymes.
    Nagy V; Pirakitikulr N; Zhou KI; Chillón I; Luo J; Pyle AM
    RNA; 2013 Sep; 19(9):1266-78. PubMed ID: 23882113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The stereochemical course of group II intron self-splicing.
    Padgett RA; Podar M; Boulanger SC; Perlman PS
    Science; 1994 Dec; 266(5191):1685-8. PubMed ID: 7527587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5.
    Joyce GF; van der Horst G; Inoue T
    Nucleic Acids Res; 1989 Oct; 17(19):7879-89. PubMed ID: 2477801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principle of K
    Kumar A; Satpati P
    J Mol Graph Model; 2018 Sep; 84():1-9. PubMed ID: 29787928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.