BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 23195997)

  • 1. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ.
    Yoon JH; Park J; Conde J; Wakamiya M; Prakash L; Prakash S
    Genes Dev; 2015 Dec; 29(24):2588-602. PubMed ID: 26680302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links.
    Hicks JK; Chute CL; Paulsen MT; Ragland RL; Howlett NG; Guéranger Q; Glover TW; Canman CE
    Mol Cell Biol; 2010 Mar; 30(5):1217-30. PubMed ID: 20028736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. REV1 and DNA polymerase zeta in DNA interstrand crosslink repair.
    Sharma S; Canman CE
    Environ Mol Mutagen; 2012 Dec; 53(9):725-40. PubMed ID: 23065650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance.
    Haynes B; Saadat N; Myung B; Shekhar MP
    Mutat Res Rev Mutat Res; 2015; 763():258-66. PubMed ID: 25795124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different sets of translesion synthesis DNA polymerases protect from genome instability induced by distinct food-derived genotoxins.
    Temviriyanukul P; Meijers M; van Hees-Stuivenberg S; Boei JJ; Delbos F; Ohmori H; de Wind N; Jansen JG
    Toxicol Sci; 2012 May; 127(1):130-8. PubMed ID: 22331492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage.
    Wang Z; Xiao W
    Curr Genet; 2020 Oct; 66(5):1019-1028. PubMed ID: 32623695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rev1-Polζ translesion synthesis mutasome: Structure, interactions and inhibition.
    Rizzo AA; Korzhnev DM
    Enzymes; 2019; 45():139-181. PubMed ID: 31627876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.
    Venkadakrishnan J; Lahane G; Dhar A; Xiao W; Bhat KM; Pandita TK; Bhat A
    Mol Cell Biol; 2023; 43(8):401-425. PubMed ID: 37439479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Division of labor of Y-family polymerases in translesion-DNA synthesis for distinct types of DNA damage.
    Inomata Y; Abe T; Tsuda M; Takeda S; Hirota K
    PLoS One; 2021; 16(6):e0252587. PubMed ID: 34061890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA.
    Kochenova OV; Daee DL; Mertz TM; Shcherbakova PV
    PLoS Genet; 2015 Mar; 11(3):e1005110. PubMed ID: 25826305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.
    Livneh Z; Ziv O; Shachar S
    Cell Cycle; 2010 Feb; 9(4):729-35. PubMed ID: 20139724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen.
    Hishiki A; Hashimoto H; Hanafusa T; Kamei K; Ohashi E; Shimizu T; Ohmori H; Sato M
    J Biol Chem; 2009 Apr; 284(16):10552-60. PubMed ID: 19208623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-dependent regulation of translesion polymerases.
    Chun AC; Jin DY
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance.
    Fuchs RP
    DNA Repair (Amst); 2016 Aug; 44():51-58. PubMed ID: 27321147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage tolerance: a double-edged sword guarding the genome.
    Ghosal G; Chen J
    Transl Cancer Res; 2013; 2(3):107-129. PubMed ID: 24058901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis.
    Pustovalova Y; Magalhães MT; D'Souza S; Rizzo AA; Korza G; Walker GC; Korzhnev DM
    Biochemistry; 2016 Apr; 55(13):2043-53. PubMed ID: 26982350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.