These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23196008)

  • 1. Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts.
    Werner C; Matile P
    J Plant Physiol; 1985 Mar; 118(3):237-49. PubMed ID: 23196008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: a fluorescence microscopy analysis.
    Tattini M; Di Ferdinando M; Brunetti C; Goti A; Pollastri S; Bellasio C; Giordano C; Fini A; Agati G
    J Photochem Photobiol B; 2014 Nov; 140():28-35. PubMed ID: 25063983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose transport into vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Heber U
    Planta; 1984 Nov; 161(6):562-8. PubMed ID: 24253927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves.
    Mimura T; Dietz KJ; Kaiser W; Schramm MJ; Kaiser G; Heber U
    Planta; 1990 Jan; 180(2):139-46. PubMed ID: 24201937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of anions in isolated barley vacuoles : I. Permeability to anions and evidence for a cl-uptake system.
    Martinoia E; Schramm MJ; Kaiser G; Kaiser WM; Heber U
    Plant Physiol; 1986 Apr; 80(4):895-901. PubMed ID: 16664738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipeptide transport in barley mesophyll vacuoles.
    Jamaï A; Gaillard C; Delrot S; Martinoia E
    Planta; 1995; 196(3):430-3. PubMed ID: 7647680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms.
    Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M
    Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and subcellular compartmentation of gibberellin a(1) applied to leaves of barley and cowpea.
    Ohlrogge JB; García-Martínez JL; Adams D; Rappaport L
    Plant Physiol; 1980 Sep; 66(3):422-7. PubMed ID: 16661448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of phenylalanine into vacuoles isolated from barley mesophyll protoplasts.
    Homeyer U; Schultz G
    Planta; 1988 Dec; 176(3):378-82. PubMed ID: 24220866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport.
    Marinova K; Kleinschmidt K; Weissenböck G; Klein M
    Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino Acid Transport across the Tonoplast of Vacuoles Isolated from Barley Mesophyll Protoplasts : Uptake of Alanine, Leucine, and Glutamine.
    Dietz KJ; Jäger R; Kaiser G; Martinoia E
    Plant Physiol; 1990 Jan; 92(1):123-9. PubMed ID: 16667233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scopoletin uptake from culture medium and accumulation in the vacuoles after conversion to scopolin in 2,4-D-treated tobacco cells.
    Taguchi G; Fujikawa S; Yazawa T; Kodaira R; Hayashida N; Shimosaka M; Okazaki M
    Plant Sci; 2000 Feb; 151(2):153-161. PubMed ID: 10808071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential compartmentation of gibberellin a(1) and its metabolites in vacuoles of cowpea and barley leaves.
    Garcia-Martinez JL
    Plant Physiol; 1981 Oct; 68(4):865-7. PubMed ID: 16662014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of Ascorbic and Dehydroascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare L. cv Gerbel) Leaves.
    Rautenkranz A; Li L; Machler F; Martinoia E; Oertli JJ
    Plant Physiol; 1994 Sep; 106(1):187-193. PubMed ID: 12232318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens.
    Ma JF; Ueno D; Zhao FJ; McGrath SP
    Planta; 2005 Mar; 220(5):731-6. PubMed ID: 15517354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citrate transport into barley mesophyll vacuoles - comparison with malate-uptake activity.
    Rentsch D; Martinoia E
    Planta; 1991 Jul; 184(4):532-7. PubMed ID: 24194244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of high temperatures on leaf cells of Valerianella: relative heat stability of the tonoplast membrane of mesophyll vacuoles.
    Weigel HJ
    Planta; 1983 Nov; 159(5):398-403. PubMed ID: 24258291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of arginine and aspartic Acid into isolated barley mesophyll vacuoles.
    Martinoia E; Thume M; Vogt E; Rentsch D; Dietz KJ
    Plant Physiol; 1991 Oct; 97(2):644-50. PubMed ID: 16668447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.