These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 23196224)

  • 41. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An investigation into the impact of CO2 co-feed on pyrolysis and gasification.
    Kwon E; Kim S
    Chemosphere; 2010 Aug; 80(8):957-63. PubMed ID: 20546843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal pyrolysis of fresh and waste fishing nets.
    Kim SS; Jeon JK; Park YK; Kim S
    Waste Manag; 2005; 25(8):811-7. PubMed ID: 16125061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermo gravimetric and kinetic studies on dried solid waste of post-methanated distillery effluent under oxygen and nitrogen atmosphere.
    Naveen C; Premalatha M
    Bioresour Technol; 2014 Dec; 174():126-33. PubMed ID: 25463791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis.
    Liu G; Song H; Wu J
    Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The kinetics model and pyrolysis behavior of the aqueous fraction of bio-oil.
    Liu S; Chen M; Hu Q; Wang J; Kong L
    Bioresour Technol; 2013 Feb; 129():381-6. PubMed ID: 23262015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air.
    Rueda-Ordóñez YJ; Tannous K
    Bioresour Technol; 2016 Jul; 211():231-9. PubMed ID: 27019126
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic analysis on the non-isothermal degradation of plum stone waste by thermogravimetric analysis and integral master-plots method.
    Ceylan S
    Waste Manag Res; 2015 Apr; 33(4):345-52. PubMed ID: 25784691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.
    Zhou X; Jia H; Qu C; Fan D; Wang C
    Environ Technol; 2017 Feb; 38(3):361-369. PubMed ID: 27242020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres.
    Tahmasebi A; Kassim MA; Yu J; Bhattacharya S
    Bioresour Technol; 2013 Dec; 150():15-27. PubMed ID: 24140946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental and kinetic modeling of oxygen-enriched air combustion of paper mill sludge.
    Liu K; Ma XQ; Xiao HM
    Waste Manag; 2010 Jul; 30(7):1206-11. PubMed ID: 20392627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass.
    Ali SA; Razzak SA; Hossain MM
    Bioresour Technol; 2015 Jan; 175():569-77. PubMed ID: 25459869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis.
    Uzun BB; Yaman E
    Waste Manag Res; 2014 Oct; 32(10):961-70. PubMed ID: 25030024
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.
    Shen J; Igathinathane C; Yu M; Pothula AK
    Bioresour Technol; 2015 Jun; 185():89-98. PubMed ID: 25756207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion.
    Jiang X; Li C; Chi Y; Yan J
    J Hazard Mater; 2010 Jan; 173(1-3):205-10. PubMed ID: 19735979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.
    Almeida HN; Calixto GQ; Chagas BME; Melo DMA; Resende FM; Melo MAF; Braga RM
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14142-14150. PubMed ID: 28417328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.
    Li Z; Zhao W; Meng B; Liu C; Zhu Q; Zhao G
    Bioresour Technol; 2008 Nov; 99(16):7616-22. PubMed ID: 18343656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.