These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23196424)

  • 1. Equilibrium and non-equilibrium thermodynamics of templating reactions for the formation of nanowires.
    Watson SM; Houlton A; Horrocks BR
    Nanotechnology; 2012 Dec; 23(50):505603. PubMed ID: 23196424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of formation of supramolecular DNA-templated polymer nanowires.
    Watson SM; Galindo MA; Horrocks BR; Houlton A
    J Am Chem Soc; 2014 May; 136(18):6649-55. PubMed ID: 24712548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth and conductive DNA-templated Cu₂O nanowires: growth morphology, spectroscopic and electrical characterization.
    Hassanien R; Al-Said SA; Siller L; Little R; Wright NG; Houlton A; Horrocks BR
    Nanotechnology; 2012 Feb; 23(7):075601. PubMed ID: 22261265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically conductive magnetic nanowires using an electrochemical DNA-templating route.
    Watson SM; Mohamed HD; Horrocks BR; Houlton A
    Nanoscale; 2013 Jun; 5(12):5349-59. PubMed ID: 23649009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-templated nanowires: morphology and electrical conductivity.
    Watson SM; Pike AR; Pate J; Houlton A; Horrocks BR
    Nanoscale; 2014 Apr; 6(8):4027-37. PubMed ID: 24614835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-assisted "double-templating" approach for the construction of hollow meshed inorganic nanoshells.
    Pu S; Zinchenko AA; Murata S
    Langmuir; 2011 Apr; 27(8):5009-13. PubMed ID: 21434654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic and conductive magnetite nanowires by DNA-templating.
    Mohamed HD; Watson SM; Horrocks BR; Houlton A
    Nanoscale; 2012 Sep; 4(19):5936-45. PubMed ID: 22903403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterisation and electrical properties of supramolecular DNA-templated polymer nanowires of 2,5-(bis-2-thienyl)-pyrrole.
    Watson SM; Hedley JH; Galindo MA; Al-Said SA; Wright NG; Connolly BA; Horrocks BR; Houlton A
    Chemistry; 2012 Sep; 18(38):12008-19. PubMed ID: 22887143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting and superheating of nanowires--a nanotube approach.
    Sar DK; Nanda KK
    Nanotechnology; 2010 May; 21(20):205701. PubMed ID: 20413835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical transformations in ultrathin chalcogenide nanowires.
    Moon GD; Ko S; Xia Y; Jeong U
    ACS Nano; 2010 Apr; 4(4):2307-19. PubMed ID: 20337466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational behavior of DNA-templated CdS inorganic nanowire.
    Pu S; Zinchenko A; Murata S
    Nanotechnology; 2011 Sep; 22(37):375604. PubMed ID: 21852738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, manipulation and conductivity of supramolecular polymer nanowires.
    Dong L; Hollis T; Fishwick S; Connolly BA; Wright NG; Horrocks BR; Houlton A
    Chemistry; 2007; 13(3):822-8. PubMed ID: 17154323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium effects in DNA microarrays: a multiplatform study.
    Walter JC; Kroll KM; Hooyberghs J; Carlon E
    J Phys Chem B; 2011 May; 115(20):6732-9. PubMed ID: 21542593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: a non-equilibrium thermodynamics point of view.
    Alvarez-Romero JT
    Radiat Prot Dosimetry; 2006; 119(1-4):75-9. PubMed ID: 16731692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors governing the foldability of proteins.
    Klimov DK; Thirumalai D
    Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological evolution and ordered quantum structure formation in heteroepitaxial core--shell nanowires.
    Guo JY; Zhang YW; Shenoy VB
    ACS Nano; 2010 Aug; 4(8):4455-62. PubMed ID: 20681529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collision of a long DNA molecule with an isolated nanowire.
    Araki N; Aydil ES; Dorfman KD
    Electrophoresis; 2010 Nov; 31(22):3675-80. PubMed ID: 20967778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superiority of branched side chains in spontaneous nanowire formation: exemplified by poly(3-2-methylbutylthiophene) for high-performance solar cells.
    Chen HC; Wu IC; Hung JH; Chen FJ; Chen IW; Peng YK; Lin CS; Chen CH; Sheng YJ; Tsao HK; Chou PT
    Small; 2011 Apr; 7(8):1098-107. PubMed ID: 21425466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires.
    Liang HW; Liu S; Wu QS; Yu SH
    Inorg Chem; 2009 Jun; 48(11):4927-33. PubMed ID: 19374372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.