These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23196743)

  • 1. Formation of a carbon nanoribbon by spontaneous collapse of a carbon nanotube grown from a γ-Fe nanoparticle via an origami mechanism.
    Kohno H; Komine T; Hasegawa T; Niioka H; Ichikawa S
    Nanoscale; 2013 Jan; 5(2):570-3. PubMed ID: 23196743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splitting and joining in carbon nanotube/nanoribbon/nanotetrahedron growth.
    Hasegawa T; Kohno H
    Phys Chem Chem Phys; 2015 Feb; 17(5):3009-13. PubMed ID: 25559588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edge-closed graphene nanoribbons fabricated by spontaneous collapse of few-walled carbon nanotubes.
    Li Y
    Phys Chem Chem Phys; 2014 Feb; 16(5):1921-9. PubMed ID: 24336507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the stacking order of curved few-layered graphene systems.
    Hayashi T; Muramatsu H; Shimamoto D; Fujisawa K; Tojo T; Muramoto Y; Yokomae T; Asaoka T; Kim YA; Terrones M; Endo M
    Nanoscale; 2012 Oct; 4(20):6419-24. PubMed ID: 22955157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse.
    He M; Dong J; Zhang K; Ding F; Jiang H; Loiseau A; Lehtonen J; Kauppinen EI
    ACS Nano; 2014 Sep; 8(9):9657-63. PubMed ID: 25131158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled fabrication of intermolecular junctions of single-walled carbon nanotube/graphene nanoribbon.
    Yu F; Zhou H; Zhang Z; Wang G; Yang H; Chen M; Tao L; Tang D; He J; Sun L
    Small; 2013 Jul; 9(14):2405-9. PubMed ID: 23650121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.
    Sokolov AN; Yap FL; Liu N; Kim K; Ci L; Johnson OB; Wang H; Vosgueritchian M; Koh AL; Chen J; Park J; Bao Z
    Nat Commun; 2013; 4():2402. PubMed ID: 23989553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verification of Mechanism for the Formation of Carbon Nanotetrahedra Using Electron Beam Tomography.
    Yamauchi A; Kohno H
    J Nanosci Nanotechnol; 2017 Jan; 17(1):842-45. PubMed ID: 29634181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of coupled graphene-nanotube quantum devices.
    Engels S; Weber P; Terrés B; Dauber J; Meyer C; Volk C; Trellenkamp S; Wichmann U; Stampfer C
    Nanotechnology; 2013 Jan; 24(3):035204. PubMed ID: 23263231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
    Kosynkin DV; Higginbotham AL; Sinitskii A; Lomeda JR; Dimiev A; Price BK; Tour JM
    Nature; 2009 Apr; 458(7240):872-6. PubMed ID: 19370030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene nanoribbon composites.
    Rafiee MA; Lu W; Thomas AV; Zandiatashbar A; Rafiee J; Tour JM; Koratkar NA
    ACS Nano; 2010 Dec; 4(12):7415-20. PubMed ID: 21080652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes.
    Zhang C; Bets K; Lee SS; Sun Z; Mirri F; Colvin VL; Yakobson BI; Tour JM; Hauge RH
    ACS Nano; 2012 Jul; 6(7):6023-32. PubMed ID: 22676224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.
    Morelos-Gómez A; Vega-Díaz SM; González VJ; Tristán-López F; Cruz-Silva R; Fujisawa K; Muramatsu H; Hayashi T; Mi X; Shi Y; Sakamoto H; Khoerunnisa F; Kaneko K; Sumpter BG; Kim YA; Meunier V; Endo M; Muñoz-Sandoval E; Terrones M
    ACS Nano; 2012 Mar; 6(3):2261-72. PubMed ID: 22360783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.