BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 23196890)

  • 1. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo.
    Lobikin M; Chernet B; Lobo D; Levin M
    Phys Biol; 2012 Dec; 9(6):065002. PubMed ID: 23196890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway.
    Blackiston D; Adams DS; Lemire JM; Lobikin M; Levin M
    Dis Model Mech; 2011 Jan; 4(1):67-85. PubMed ID: 20959630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model.
    Chernet BT; Levin M
    Dis Model Mech; 2013 May; 6(3):595-607. PubMed ID: 23471912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range.
    Chernet BT; Levin M
    Oncotarget; 2014 May; 5(10):3287-306. PubMed ID: 24830454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer.
    Chernet B; Levin M
    J Clin Exp Oncol; 2013; Suppl 1():. PubMed ID: 25525610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation.
    Pai VP; Lemire JM; Paré JF; Lin G; Chen Y; Levin M
    J Neurosci; 2015 Mar; 35(10):4366-85. PubMed ID: 25762681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local and long-range endogenous resting potential gradients antagonistically regulate apoptosis and proliferation in the embryonic CNS.
    Pai VP; Lemire JM; Chen Y; Lin G; Levin M
    Int J Dev Biol; 2015; 59(7-9):327-40. PubMed ID: 26198142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation.
    Lobikin M; Lobo D; Blackiston DJ; Martyniuk CJ; Tkachenko E; Levin M
    Sci Signal; 2015 Oct; 8(397):ra99. PubMed ID: 26443706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration.
    Levin M
    J Physiol; 2014 Jun; 592(11):2295-305. PubMed ID: 24882814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective depolarization of transmembrane potential alters muscle patterning and muscle cell localization in Xenopus laevis embryos.
    Lobikin M; Paré JF; Kaplan DL; Levin M
    Int J Dev Biol; 2015; 59(7-9):303-11. PubMed ID: 26198143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation.
    Maurus K; Hufnagel A; Geiger F; Graf S; Berking C; Heinemann A; Paschen A; Kneitz S; Stigloher C; Geissinger E; Otto C; Bosserhoff A; Schartl M; Meierjohann S
    Oncogene; 2017 Sep; 36(36):5110-5121. PubMed ID: 28481878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis.
    Pai VP; Aw S; Shomrat T; Lemire JM; Levin M
    Development; 2012 Jan; 139(2):313-23. PubMed ID: 22159581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of cellular protooncogene activation and transformation-related activity of human melanocytes and metastatic melanoma.
    Husain Z; FitzGerald GB; Wick MM
    J Invest Dermatol; 1990 Nov; 95(5):571-5. PubMed ID: 2121834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer.
    Liu-Smith F; Jia J; Zheng Y
    Adv Exp Med Biol; 2017; 996():27-40. PubMed ID: 29124688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Putting it all on pigmentation: Heuristics of a bold and stochastic cell fate decision.
    Xing J; Lee RE
    Sci Signal; 2015 Oct; 8(397):fs17. PubMed ID: 26443702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment.
    Seftor EA; Brown KM; Chin L; Kirschmann DA; Wheaton WW; Protopopov A; Feng B; Balagurunathan Y; Trent JM; Nickoloff BJ; Seftor RE; Hendrix MJ
    Cancer Res; 2005 Nov; 65(22):10164-9. PubMed ID: 16288000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos.
    Chernet BT; Fields C; Levin M
    Front Physiol; 2014; 5():519. PubMed ID: 25646081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transducing bioelectric signals into epigenetic pathways during tadpole tail regeneration.
    Tseng AS; Levin M
    Anat Rec (Hoboken); 2012 Oct; 295(10):1541-51. PubMed ID: 22933452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer stem cells and human malignant melanoma.
    Schatton T; Frank MH
    Pigment Cell Melanoma Res; 2008 Feb; 21(1):39-55. PubMed ID: 18353142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants of metastatic transformation.
    Egan SE; Wright JA; Greenberg AH
    Environ Health Perspect; 1991 Jun; 93():91-5. PubMed ID: 1773806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.