BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23197367)

  • 1. Glycocapture-based proteomics for secretome analysis.
    Lai ZW; Nice EC; Schilling O
    Proteomics; 2013 Feb; 13(3-4):512-25. PubMed ID: 23197367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lectin capture strategy for effective analysis of cell secretome.
    Zhang Y; Tang X; Yao L; Chen K; Jia W; Hu X; Xu LX
    Proteomics; 2012 Jan; 12(1):32-6. PubMed ID: 22065611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of N-glycosylated proteins using proteomics.
    Selby DS; Larsen MR; Calvano CD; Jensen ON
    Methods Mol Biol; 2008; 484():263-76. PubMed ID: 18592185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass Spectrometry-Based Chemical and Enzymatic Methods for Global Analysis of Protein Glycosylation.
    Xiao H; Suttapitugsakul S; Sun F; Wu R
    Acc Chem Res; 2018 Aug; 51(8):1796-1806. PubMed ID: 30011186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins.
    Witzke KE; Rosowski K; Müller C; Ahrens M; Eisenacher M; Megger DA; Knobloch J; Koch A; Bracht T; Sitek B
    J Proteome Res; 2017 Jan; 16(1):137-146. PubMed ID: 27696881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive N-glycome profiling of cultured human epithelial breast cells identifies unique secretome N-glycosylation signatures enabling tumorigenic subtype classification.
    Lee LY; Thaysen-Andersen M; Baker MS; Packer NH; Hancock WS; Fanayan S
    J Proteome Res; 2014 Nov; 13(11):4783-95. PubMed ID: 25210975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of the performance of secretome analysis based on metabolic labeling by three unnatural sugars].
    Mao Y; Zheng J; Feng S; Tian R
    Se Pu; 2021 Oct; 39(10):1086-1093. PubMed ID: 34505430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of glycoproteins in human cerebrospinal fluid.
    Hwang HJ; Quinn T; Zhang J
    Methods Mol Biol; 2009; 566():263-76. PubMed ID: 20058177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Analysis of Secreted Proteins and Glycoproteins in Saccharomyces cerevisiae.
    Smeekens JM; Xiao H; Wu R
    J Proteome Res; 2017 Feb; 16(2):1039-1049. PubMed ID: 27933904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycoprotein enrichment through lectin affinity techniques.
    Mechref Y; Madera M; Novotny MV
    Methods Mol Biol; 2008; 424():373-96. PubMed ID: 18369876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A serial lectin approach to the mucin-type O-glycoproteome of Drosophila melanogaster S2 cells.
    Schwientek T; Mandel U; Roth U; Müller S; Hanisch FG
    Proteomics; 2007 Sep; 7(18):3264-77. PubMed ID: 17708590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using lectins to harvest the plasma/serum glycoproteome.
    Fanayan S; Hincapie M; Hancock WS
    Electrophoresis; 2012 Jul; 33(12):1746-54. PubMed ID: 22740463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative profiling of serum glycoproteome by sequential purification of glycoproteins and 2-nitrobenzensulfenyl (NBS) stable isotope labeling: a new approach for the novel biomarker discovery for cancer.
    Ueda K; Katagiri T; Shimada T; Irie S; Sato TA; Nakamura Y; Daigo Y
    J Proteome Res; 2007 Sep; 6(9):3475-83. PubMed ID: 17705522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomic analysis of N-linked glycoproteins in human tear fluid.
    Zhou L; Beuerman RW
    Methods Mol Biol; 2013; 951():297-306. PubMed ID: 23296539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining pulsed SILAC labeling and click-chemistry for quantitative secretome analysis.
    Eichelbaum K; Krijgsveld J
    Methods Mol Biol; 2014; 1174():101-14. PubMed ID: 24947377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome.
    McDonald CA; Yang JY; Marathe V; Yen TY; Macher BA
    Mol Cell Proteomics; 2009 Feb; 8(2):287-301. PubMed ID: 18923192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the CHO secretome using mucin-type O-linked glycosylation and click-chemistry.
    Slade PG; Hajivandi M; Bartel CM; Gorfien SF
    J Proteome Res; 2012 Dec; 11(12):6175-86. PubMed ID: 23140450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of glycoproteins in human cerebrospinal fluid with a complementary proteomic approach.
    Pan S; Wang Y; Quinn JF; Peskind ER; Waichunas D; Wimberger JT; Jin J; Li JG; Zhu D; Pan C; Zhang J
    J Proteome Res; 2006 Oct; 5(10):2769-79. PubMed ID: 17022648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global survey of the bovine salivary proteome: integrating multidimensional prefractionation, targeted, and glycocapture strategies.
    Ang CS; Binos S; Knight MI; Moate PJ; Cocks BG; McDonagh MB
    J Proteome Res; 2011 Nov; 10(11):5059-69. PubMed ID: 21902196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers.
    Gomez-Auli A; Hillebrand LE; Biniossek ML; Peters C; Reinheckel T; Schilling O
    Biochimie; 2016 Mar; 122():88-98. PubMed ID: 26455267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.