These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 231974)

  • 1. Turnover of adenosine 3':5'-cyclic monophosphate in chicken erythrocytes.
    Gorin E; Dickbuch S
    Biochem J; 1979 Dec; 184(3):575-9. PubMed ID: 231974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of cyclic AMP from chicken erythrocytes.
    Gorin E; Dickbuch S
    Horm Metab Res; 1980 Mar; 12(3):120-4. PubMed ID: 6245999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of epinephrine on the degradation of cyclic AMP in chicken erythrocytes.
    Gorin E; Dickbuch S
    Biochem Biophys Res Commun; 1979 Dec; 91(4):1314-20. PubMed ID: 230841
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis and degradation of cyclic 3',5'-adenosine monophosphate in frog erythrocytes.
    Rosen OM; Goren EN; Erlichman J; Rosen SM
    Adv Biochem Psychopharmacol; 1970; 3():31-50. PubMed ID: 4331461
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of PGE-1 on cyclic AMP and ion movements in turkey erythrocytes.
    Shaw J; Gibson W; Jessup S; Ramwell P
    Ann N Y Acad Sci; 1971 Apr; 180():241-60. PubMed ID: 4329028
    [No Abstract]   [Full Text] [Related]  

  • 7. The influence of adrenaline on the metabolism of erythrocytes in vitro.
    Mairbäurl H; Humpeler E
    Biochem Soc Trans; 1981 Feb; 9(1):99-100. PubMed ID: 6260559
    [No Abstract]   [Full Text] [Related]  

  • 8. Rate, force and cyclic adenosine 3',5'-monophosphate responses to (--)-adrenaline in neonatal rat heart tissue.
    Au TL; Collins GA; Walker MJ
    Br J Pharmacol; 1980 Aug; 69(4):601-8. PubMed ID: 6254594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-adrenergic agonists regulate cell membrane fluctuations of human erythrocytes.
    Tuvia S; Moses A; Gulayev N; Levin S; Korenstein R
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):781-92. PubMed ID: 10200425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro influences of adrenaline on erythrocyte metabolism and on oxygen affinity of hemoglobin.
    Mairbäurl H; Humpeler E
    Prog Clin Biol Res; 1981; 55():311-22. PubMed ID: 6270694
    [No Abstract]   [Full Text] [Related]  

  • 11. Adrenergic responses of R. ridibunda red cells.
    Kaloyianni M; Rasidaki A
    J Exp Zool; 1996 Oct; 276(3):175-85. PubMed ID: 8914277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between the effects of adrenaline and ionophore A23187 on adenosine 3':5'-cyclic monophosphate and on free intracellular calcium ion concentrations in pigeon erythrocyte 'ghosts' [proceedings].
    Campbell AK; Dormer RL
    Biochem Soc Trans; 1977; 5(4):962-5. PubMed ID: 199505
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of adenosine 3':5'-cyclic monophosphate in the regulation of insulin release by isolated rat islets of Langerhans.
    Montague W; Cook JR
    Biochem J; 1971 Mar; 122(1):115-20. PubMed ID: 4330960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of caffeine and cyclic adenosine 3',5'-monophosphate on adenosine triphosphate-dependent calcium uptake by lysed brain synaptosomes.
    Mekhail-Ishak K; Lavoie PA; Sharkawi M
    Brain Res; 1987 Nov; 426(1):62-8. PubMed ID: 2825917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine 3': 5'-cyclic monophosphate in young and senescent human fibroblasts during growth and stationary phase in vitro. Effects of prostaglandine E1 and of adrenaline.
    Haslam RJ; Goldstein S
    Biochem J; 1974 Nov; 144(2):253-63. PubMed ID: 4376959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of epinephrine stimulated synthesis of cyclic adenosine 3':5' monophosphate during maturation of rabbit and human reticulocytes.
    Babu CR; Azhar S; Krishna Murti CR
    Med Biol; 1975 Jun; 53(3):148-55. PubMed ID: 169441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine-induced release of cyclic adenosine 3',5'-monophosphate from the left ventricle in the anaesthetized intact dog.
    Huynh-Thu T; Lammerant J
    J Physiol; 1978 Jun; 279():641-54. PubMed ID: 209181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor-mediated gonadotropin action in the ovary. Regulatory role of cyclic nucleotide phosphodiesterase(s) in intracellular adenosine 3':5'-cyclic monophosphate turnover and gonadotropin-stimulated progesterone production by rat ovarian cells.
    Azhar S; Menon KM
    Biochem J; 1979 Apr; 180(1):201-11. PubMed ID: 226066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenaline, noradrenaline, and adenosine 3',5'-monophosphate levels in plasma of healthy persons during ergometric work with and without beta-receptor blocking agents.
    Mäurer W; Kuhn H; Breithardt G; Kübler W
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():369-74. PubMed ID: 179120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of adrenaline and glucocorticoids on monocyte cAMP-specific phosphodiesterase (PDE4) in a monocytic cell line.
    Delgado M; Fernández-Alfonso MS; Fuentes A
    Arch Dermatol Res; 2002 Jul; 294(4):190-7. PubMed ID: 12111350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.