These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 231974)

  • 21. Acceleration of sugar transport in avian erythrocytes by catecholamines.
    Whitfield CF; Rannels SR; Morgan HE
    J Biol Chem; 1974 Jul; 249(13):4181-8. PubMed ID: 4368363
    [No Abstract]   [Full Text] [Related]  

  • 22. Inhibition by isoproterenol of the passive potassium efflux from pigeon erythrocytes.
    Leskovac V; Pericin D; Trivić S; Stupar M; Murgul L
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(2):475-8. PubMed ID: 6149099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymorphism of cyclic 3',5'-adenosine monophosphate stimulation in rat erythrocytes.
    Stolc V
    Acta Haematol; 1991; 85(4):195-8. PubMed ID: 1713012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of 5-hydroxytryptamine and other indole derivatives on the formation of adenosine 3',5'-cyclic monophosphate in pigeon erythrocytes.
    Campbell AK; Siddle K
    Biochim Biophys Acta; 1977 Mar; 497(1):62-74. PubMed ID: 14710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition by calcium ions of adenosine cyclic monophosphate formation in sealed pigeon erythrocyte 'ghosts'. A study using the photoprotein obelin.
    Campbell AK; Dormer RL
    Biochem J; 1978 Oct; 176(1):53-66. PubMed ID: 215135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic effects induced by epinephrine in Rana balcanica erythrocytes under normoxic and hypoxic conditions.
    Kaloyianni M; Papaefthimiou I; Simeonidou V
    Cell Biochem Funct; 2000 Sep; 18(3):187-99. PubMed ID: 10965356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alprenolol binding and cyclic AMP production in embryonic chick red cells during erythropoiesis.
    Wacholtz MC; Sha'afi RI
    Membr Biochem; 1980; 3(4):259-70. PubMed ID: 6261078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of activation of protein kinase C on the agonist-induced stimulation and inhibition of cyclic AMP formation in intact human platelets.
    Williams KA; Murphy W; Haslam RJ
    Biochem J; 1987 May; 243(3):667-78. PubMed ID: 2444206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of adrenaline and methylisobutylxanthine on adenosine 3':5'-monophosphate levels in cultures of beating heart cells of the newborn rat.
    Wollenberger A; Irmler R
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 12():689-95. PubMed ID: 202003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of hormone-sensitive, resealed erythrocyte ghosts.
    Steer ML; Baldwin C; Levitzki A
    J Biol Chem; 1976 Aug; 251(16):4930-5. PubMed ID: 182686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative activation by AMP and cyclic-AMP of rat erythrocyte and reticulocyte glycolysis.
    Luque J; Roncalés P; Tejero C; Pinilla M
    Acta Biol Med Ger; 1977; 36(5-6):631-8. PubMed ID: 203150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The relationship between the concentration of adenosine 3':5'-cyclic monophosphate and the anti-lipolytic action of insulin in isolated rat fat-cells.
    Siddle K; Hales CN
    Biochem J; 1974 Jul; 142(1):97-103. PubMed ID: 4374189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circulating calcium modulates adrenaline induced cyclic adenosine monophosphate production.
    Prielipp RC; Hill T; Washburn D; Zaloga GP
    Cardiovasc Res; 1989 Oct; 23(10):838-41. PubMed ID: 2559803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of adenosine 3':5'-monophosphate-dependent protein kinase activation and inhibition of thymidine incorporation into DNA in P1798 lymphosarcoma cells.
    Michnoff CA; de la Houssaye BA; Masaracchia RA
    Cancer Res; 1983 Aug; 43(8):3514-20. PubMed ID: 6305487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The phosphodiesterase type 4 (PDE4) inhibitor CP-80,633 elevates plasma cyclic AMP levels and decreases tumor necrosis factor-alpha (TNFalpha) production in mice: effect of adrenalectomy.
    Cheng JB; Watson JW; Pazoles CJ; Eskra JD; Griffiths RJ; Cohan VL; Turner CR; Showell HJ; Pettipher ER
    J Pharmacol Exp Ther; 1997 Feb; 280(2):621-6. PubMed ID: 9023272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activities and some properties of adenylate cyclase and phosphodiesterase in muscle, liver and nervous tissues from vertebrates and invertebrates in relation to the control of the concentration of adenosine 3':5'-cyclic monophosphate.
    Arch JR; Newsholme EA
    Biochem J; 1976 Sep; 158(3):603-22. PubMed ID: 186042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cyclic AMP-mediated action of epinephrine on the activity of carbonic anhydrase in avian erythrocytes.
    Siegmund P; Tüllmann A; Holke M
    Horm Metab Res; 1974 Mar; 6(2):158-61. PubMed ID: 4364017
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of epinephrine, adrenocorticotrophic hormone, and theophylline on adenosine 3', 5'-monophosphate phosphodiesterase activity in fat cells.
    Pawlson LG; Lovell-Smith CJ; Manganiello VC; Vaughan M
    Proc Natl Acad Sci U S A; 1974 May; 71(5):1639-42. PubMed ID: 4365758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caffeine effects on cyclic AMP levels in the mouse embryonic limb and palate in vitro.
    Schreiner CM; Zimmerman EF; Wee EL; Scott WJ
    Teratology; 1986 Aug; 34(1):21-7. PubMed ID: 3020730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of adrenalectomy on acceleration of gluconeogenesis by calcium ions, adenosine 3':5'-cyclic monophosphate and adrenaline in rat kidney tubules.
    MacDonald DW; Saggerson ED
    Biochem J; 1978 Aug; 174(2):641-6. PubMed ID: 213058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.