These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23197837)

  • 1. Developing a broader scientific foundation for river restoration: Columbia River food webs.
    Naiman RJ; Alldredge JR; Beauchamp DA; Bisson PA; Congleton J; Henny CJ; Huntly N; Lamberson R; Levings C; Merrill EN; Pearcy WG; Rieman BE; Ruggerone GT; Scarnecchia D; Smouse PE; Wood CC
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21201-7. PubMed ID: 23197837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating food web dynamics into ecological restoration: a modeling approach for river ecosystems.
    Bellmore JR; Benjamin JR; Newsom M; Bountry JA; Dombroski D
    Ecol Appl; 2017 Apr; 27(3):814-832. PubMed ID: 28078716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework.
    McCoy AL; Holmes SR; Boisjolie BA
    Environ Manage; 2018 Mar; 61(3):506-519. PubMed ID: 28856404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrestrial contributions to the aquatic food web in the middle Yangtze River.
    Wang J; Gu B; Huang J; Han X; Lin G; Zheng F; Li Y
    PLoS One; 2014; 9(7):e102473. PubMed ID: 25047656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.
    Kautza A; Mazeika S; Sullivan P
    Ecology; 2016 Mar; 97(3):694-705. PubMed ID: 27197396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of resource availability and hydrological regime on autochthonous and allochthonous carbon in the food web of a large cross-border river (China).
    Zheng Y; Niu J; Zhou Q; Xie C; Ke Z; Li D; Gao Y
    Sci Total Environ; 2018 Jan; 612():501-512. PubMed ID: 28865268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river.
    Thorp JH; Delong MD; Greenwood KS; Casper AF
    Oecologia; 1998 Dec; 117(4):551-563. PubMed ID: 28307681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An expert panel process to evaluate habitat restoration actions in the Columbia River estuary.
    Krueger KL; Bottom DL; Hood WG; Johnson GE; Jones KK; Thom RM
    J Environ Manage; 2017 Mar; 188():337-350. PubMed ID: 28006743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment and food web structure interact to alter the trophic magnification of persistent chemicals across river ecosystems.
    Windsor FM; Pereira MG; Morrissey CA; Tyler CR; Ormerod SJ
    Sci Total Environ; 2020 May; 717():137271. PubMed ID: 32065886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals.
    Jardine TD; Woods R; Marshall J; Fawcetr J; Lobegeiger J; Valdez D; Kainz MJ
    Ecology; 2015 Dec; 96(12):3257-69. PubMed ID: 26909431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling food-web mediated effects of hydrological variability and environmental flows.
    Robson BJ; Lester RE; Baldwin DS; Bond NR; Drouart R; Rolls RJ; Ryder DS; Thompson RM
    Water Res; 2017 Nov; 124():108-128. PubMed ID: 28750285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence supporting the importance of terrestrial carbon in a large-river food web.
    Zeug SC; Winemiller KO
    Ecology; 2008 Jun; 89(6):1733-43. PubMed ID: 18589537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. River food web response to large-scale riparian zone manipulations.
    Wootton JT
    PLoS One; 2012; 7(12):e51839. PubMed ID: 23284786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent contaminants as potential constraints on the recovery of urban river food webs from gross pollution.
    Windsor FM; Pereira MG; Tyler CR; Ormerod SJ
    Water Res; 2019 Oct; 163():114858. PubMed ID: 31325703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detrital food web contributes to aquatic ecosystem productivity and rapid salmon growth in a managed floodplain.
    Jeffres CA; Holmes EJ; Sommer TR; Katz JVE
    PLoS One; 2020; 15(9):e0216019. PubMed ID: 32946438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communities at the extreme: Aquatic food webs in desert landscapes.
    Moran NP; Wong BBM; Thompson RM
    Ecol Evol; 2019 Oct; 9(19):11464-11475. PubMed ID: 31641486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Project river recovery: restoration of braided gravel-bed river habitat in New Zealand's high country.
    Caruso BS
    Environ Manage; 2006 Jun; 37(6):840-61. PubMed ID: 16508798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sources and transfers of methylmercury in adjacent river and forest food webs.
    Tsui MT; Blum JD; Kwon SY; Finlay JC; Balogh SJ; Nollet YH
    Environ Sci Technol; 2012 Oct; 46(20):10957-64. PubMed ID: 23033864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The floodplain food web mosaic: a study of its importance to salmon and steelhead with implications for their recovery.
    Bellmore JR; Baxter CV; Martens K; Connolly PJ
    Ecol Appl; 2013 Jan; 23(1):189-207. PubMed ID: 23495646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-mediated community structure of spring-fed, coastal rivers.
    Lauretta MV; Pine WE; Walters CJ; Frazer TK
    PLoS One; 2019; 14(12):e0219236. PubMed ID: 31887115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.