These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23197837)

  • 21. Ecological responses to flow variation inform river dolphin conservation.
    Paudel S; Koprowski JL; Thakuri U; Sigdel R; Gautam RC
    Sci Rep; 2020 Dec; 10(1):22348. PubMed ID: 33339890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of deltaic wetland food sources to coastal macrobenthic consumers (Po River Delta, north Adriatic Sea).
    Bongiorni L; Nasi F; Fiorentino F; Auriemma R; Rampazzo F; Nordström MC; Berto D
    Sci Total Environ; 2018 Dec; 643():1373-1386. PubMed ID: 30189554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Food web structure in a harsh glacier-fed river.
    Clitherow LR; Carrivick JL; Brown LE
    PLoS One; 2013; 8(4):e60899. PubMed ID: 23613751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Landscape diversity promotes stable food-web architectures in large rivers.
    Scholl EA; Cross WF; Guy CS; Dutton AJ; Junker JR
    Ecol Lett; 2023 Oct; 26(10):1740-1751. PubMed ID: 37497804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Restoration of fish passage: development and results of a master plan established for the Ruhr River Basin.
    Weyand M; Redeker M; Nusch EA
    Water Sci Technol; 2005; 52(9):77-84. PubMed ID: 16445176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position.
    Benke AC
    Ecology; 2018 Jun; 99(6):1370-1381. PubMed ID: 29604060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury bioaccumulation in estuarine food webs.
    Fry B; Chumchal MM
    Ecol Appl; 2012 Mar; 22(2):606-23. PubMed ID: 22611858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Species-specific biomagnification and habitat-dependent trophic transfer of halogenated organic pollutants in insect-dominated food webs from an e-waste recycling site.
    Liu Y; Luo X; Zeng Y; Tu W; Deng M; Wu Y; Mai B
    Environ Int; 2020 May; 138():105674. PubMed ID: 32234680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain).
    Olaya-Marín EJ; Martínez-Capel F; Costa RM; Alcaraz-Hernández JD
    Sci Total Environ; 2012 Dec; 440():95-105. PubMed ID: 23031292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental N and P additions relieve stoichiometric constraints on organic matter flows through five stream food webs.
    Demi LM; Benstead JP; Rosemond AD; Maerz JC
    J Anim Ecol; 2020 Jun; 89(6):1468-1481. PubMed ID: 32124431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incremental ecological exposure risks from contaminated sediments in an urban estuarine river.
    Ludwig DF; Iannuzzi TJ
    Integr Environ Assess Manag; 2005 Nov; 1(4):374-90. PubMed ID: 16639904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical tracers reveal intra-specific differences in the food webs utilized by individual seabirds.
    Hebert CE; Weseloh DV; Gauthier LT; Arts MT; Letcher RJ
    Oecologia; 2009 May; 160(1):15-23. PubMed ID: 19219461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Establishing aquatic restoration priorities using a watershed approach.
    Bohn BA; Kershner JL
    J Environ Manage; 2002 Apr; 64(4):355-63. PubMed ID: 12141156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated ecosystems: linking food webs through reciprocal resource reliance.
    Baruch EM; Bateman HL; Lytle DA; Merritt DM; Sabo JL
    Ecology; 2021 Sep; 102(9):e03450. PubMed ID: 34165784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using stable isotope analysis in stream mesocosms to study potential effects of environmental chemicals on aquatic-terrestrial subsidies.
    Wieczorek MV; Kötter D; Gergs R; Schulz R
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):12892-901. PubMed ID: 25586616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios.
    Scholz-Starke B; Ottermanns R; Rings U; Floehr T; Hollert H; Hou J; Li B; Wu LL; Yuan X; Strauch K; Wei H; Norra S; Holbach A; Westrich B; Schäffer A; Roß-Nickoll M
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7009-26. PubMed ID: 23370849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).
    Mooney C; Farrier D
    Water Sci Technol; 2002; 45(11):161-8. PubMed ID: 12171348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tracking the resource pulse: Movement responses of fish to dynamic floodplain habitat in a tropical river.
    Crook DA; Buckle DJ; Morrongiello JR; Allsop QA; Baldwin W; Saunders TM; Douglas MM
    J Anim Ecol; 2020 Mar; 89(3):795-807. PubMed ID: 31750933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stream thermal heterogeneity prolongs aquatic-terrestrial subsidy and enhances riparian spider growth.
    Uno H
    Ecology; 2016 Oct; 97(10):2547-2553. PubMed ID: 27859130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Did changes in western federal land management policies improve salmonid habitat in streams on public lands within the Interior Columbia River Basin?
    Roper BB; Saunders WC; Ojala JV
    Environ Monit Assess; 2019 Aug; 191(9):574. PubMed ID: 31422465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.