These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 2319817)
1. Long term recordings in the cat motor cortex: unit activity and field potentials from sensory and brain stem stimulation as a means of identifying electrode position. Palmer CI J Neurosci Methods; 1990 Feb; 31(2):163-81. PubMed ID: 2319817 [TBL] [Abstract][Full Text] [Related]
2. Topographical localization in the motor cortex of the cat for somatic afferent responses and evoked movements. Armstrong DM; Drew T J Physiol; 1984 May; 350():33-54. PubMed ID: 6747853 [TBL] [Abstract][Full Text] [Related]
3. The responses of pericruciate cortical neurones to distal forepaw electrical stimulation in the unanaesthetized, unrestrained cat. Palmer CI; Massion J; Dufossé M Exp Brain Res; 1986; 63(3):474-86. PubMed ID: 3758266 [TBL] [Abstract][Full Text] [Related]
4. Responses of trigeminal brain stem neurons and the digastric muscle to tooth-pulp stimulation in awake cats. Boissonade FM; Matthews B J Neurophysiol; 1993 Jan; 69(1):174-86. PubMed ID: 8433129 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous and evoked activity of neurones in the somatosensory thalamus of the waking cat. Baker MA J Physiol; 1971 Sep; 217(2):359-79. PubMed ID: 5097605 [TBL] [Abstract][Full Text] [Related]
6. Organization of corticofugal neurones in somatosensory area II of the cat. Atkinson DH; Seguin JJ; Wiesendanger M J Physiol; 1974 Feb; 236(3):663-79. PubMed ID: 4362703 [TBL] [Abstract][Full Text] [Related]
7. Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin. Jörntell H; Ekerot CF J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):551-66. PubMed ID: 9852335 [TBL] [Abstract][Full Text] [Related]
8. Organization of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections. Huang CS; Sirisko MA; Hiraba H; Murray GM; Sessle BJ J Neurophysiol; 1988 Mar; 59(3):796-818. PubMed ID: 2835448 [TBL] [Abstract][Full Text] [Related]
9. Somatosensory responses in the cat motor cortex. I. Identification and course of an afferent pathway. Padel Y; Relova JL J Neurophysiol; 1991 Dec; 66(6):2041-58. PubMed ID: 1812235 [TBL] [Abstract][Full Text] [Related]
10. Physiological properties and patterns of projection in the cortico-cortical connections from the second somatosensory cortex to the motor cortex, area 4 gamma, in the cat. Mori A; Waters RS; Asanuma H Brain Res; 1989 Dec; 504(2):206-10. PubMed ID: 2598023 [TBL] [Abstract][Full Text] [Related]
11. The responses of cat motor cortical units to electrical cutaneous stimulation during locomotion and during lifting, falling and landing. Palmer CI; Marks WB; Bak MJ Exp Brain Res; 1985; 58(1):102-16. PubMed ID: 3987842 [TBL] [Abstract][Full Text] [Related]
12. Intracellular records of the effects of primary afferent input in lumbar spinoreticular tract neurons in the cat. Sahara Y; Xie YK; Bennett GJ J Neurophysiol; 1990 Dec; 64(6):1791-800. PubMed ID: 2074464 [TBL] [Abstract][Full Text] [Related]
13. A technique for recording the activity of brain-stem neurones in awake, unrestrained cats using microwires and an implantable micromanipulator. Banks D; Kuriakose M; Matthews B J Neurosci Methods; 1993 Jan; 46(1):83-8. PubMed ID: 8459725 [TBL] [Abstract][Full Text] [Related]
14. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Deletis V; Fernández-Conejero I; Ulkatan S; Rogić M; Carbó EL; Hiltzik D Clin Neurophysiol; 2011 Sep; 122(9):1883-9. PubMed ID: 21440494 [TBL] [Abstract][Full Text] [Related]
15. Corticoreticular pathways in the cat. I. Projection patterns and collaterization. Kably B; Drew T J Neurophysiol; 1998 Jul; 80(1):389-405. PubMed ID: 9658059 [TBL] [Abstract][Full Text] [Related]
16. Kinematic representation of imposed forearm movements by pericruciate neurons (areas 4 and 3a) in the awake cat. Bedingham W; Tatton WG J Neurophysiol; 1985 Apr; 53(4):886-909. PubMed ID: 3998796 [TBL] [Abstract][Full Text] [Related]
17. [Electrophysiological characteristics of cortico-cortical connections of the parietal associative area of the cerebral cortex (field 5) with the motor cortical zone]. Koreniuk II; Khitrova TV Fiziol Zh SSSR Im I M Sechenova; 1985 Mar; 71(3):366-72. PubMed ID: 3996667 [TBL] [Abstract][Full Text] [Related]
18. Long-term recordings and receptive field measurements from single units of the visual cortex of awake unrestrained kittens. Mioche L; Singer W J Neurosci Methods; 1988 Nov; 26(1):83-94. PubMed ID: 3199850 [TBL] [Abstract][Full Text] [Related]
19. Estimation of electrode location in a rat motor cortex by laminar analysis of electrophysiology and intracortical electrical stimulation. Yazdan-Shahmorad A; Lehmkuhle MJ; Gage GJ; Marzullo TC; Parikh H; Miriani RM; Kipke DR J Neural Eng; 2011 Aug; 8(4):046018. PubMed ID: 21690656 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of cerebral cortical potentials associated with voluntary movements in monkey and man. Pieper CF; Goldring S; Jenny AB; McMahon JP Electroencephalogr Clin Neurophysiol; 1980 Mar; 48(3):266-92. PubMed ID: 6153347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]