These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 23198400)
1. Successful management of membrane oxygenator failure during cardiopulmonary bypass: the importance of safety algorithm and simulation drills. Acsell JR J Extra Corpor Technol; 2012 Sep; 44(3):164-5. PubMed ID: 23198400 [No Abstract] [Full Text] [Related]
2. Successful management of membrane oxygenator failure during cardiopulmonary bypass--the importance of safety algorithm and simulation drills. Hargrove M; Aherne T J Extra Corpor Technol; 2012 Sep; 44(3):163. PubMed ID: 23198399 [No Abstract] [Full Text] [Related]
3. Successful management of membrane oxygenator failure during cardiopulmonary bypass--the importance of safety algorithm and simulation drills. Soo A; Booth K; Parissis H J Extra Corpor Technol; 2012 Jun; 44(2):78-80. PubMed ID: 22893988 [TBL] [Abstract][Full Text] [Related]
4. Cryofibrination: did it really happen? Luckraz H; Boolauky D; Mohangee A Perfusion; 2001 Jan; 16(1):83-6. PubMed ID: 11192312 [TBL] [Abstract][Full Text] [Related]
5. The incidence and cause of emergency oxygenator changeovers. Fisher AR Perfusion; 1999 May; 14(3):207-12. PubMed ID: 10411251 [TBL] [Abstract][Full Text] [Related]
6. Preclinical evaluation of a new hollow fiber silicone membrane oxygenator for pediatric cardiopulmonary bypass: ex-vivo study. Kawahito S; Haraguchi S; Maeda T; Motomura T; Takano T; Nonaka K; Linneweber J; Ichikawa S; Kawamura M; Ishitoya H; Glueck J; Sato K; Nosé Y Ann Thorac Cardiovasc Surg; 2002 Feb; 8(1):7-11. PubMed ID: 11916436 [TBL] [Abstract][Full Text] [Related]
7. High risk of intraoperative awareness during cardiopulmonary bypass with isoflurane administration via diffusion membrane oxygenators. Philipp A; Wiesenack C; Behr R; Schmid FX; Birnbaum DE Perfusion; 2002 May; 17(3):175-8. PubMed ID: 12017384 [TBL] [Abstract][Full Text] [Related]
8. A multi-center trial with a modified design of the Sarns membrane oxygenator. Bearss MG; Bolles R; Brennan K J Extra Corpor Technol; 1992; 24(2):49-54. PubMed ID: 10147907 [TBL] [Abstract][Full Text] [Related]
9. Progressive increase in D-dimer levels during extracorporeal membrane oxygenation can predict membrane oxygenator failure in children given hematopoietic stem cell transplantation? Di Nardo M; Merli P; Cecchetti C; Pasotti E; Bertaina A; Locatelli F J Crit Care; 2016 Feb; 31(1):262-3. PubMed ID: 26476579 [No Abstract] [Full Text] [Related]
10. Evaluation of the Maquet Neonatal and Pediatric Quadrox I with an integrated arterial line filter during cardiopulmonary bypass. Melchior RW; Schiavo K; Frey T; Rogers D; Patel J; Chelnik K; Rosenthal T Perfusion; 2012 Sep; 27(5):399-406. PubMed ID: 22717608 [TBL] [Abstract][Full Text] [Related]
11. Deleterious effects of cardiopulmonary bypass. A prospective study of bubble versus membrane oxygenation. van Oeveren W; Kazatchkine MD; Descamps-Latscha B; Maillet F; Fischer E; Carpentier A; Wildevuur CR J Thorac Cardiovasc Surg; 1985 Jun; 89(6):888-99. PubMed ID: 3158783 [TBL] [Abstract][Full Text] [Related]
12. Development of the oxygenator: past, present, and future. Iwahashi H; Yuri K; Nosé Y J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331 [TBL] [Abstract][Full Text] [Related]
13. Superior venous drainage in the "LifeBox": a portable extracorporeal oxygenator with a self-expanding venous cannula. Berdajs D; Born F; Crosset M; Horisberger J; Künzli A; Ferrari E; Tozzi P; von Segesser LK Perfusion; 2010 Jul; 25(4):211-5. PubMed ID: 20573653 [TBL] [Abstract][Full Text] [Related]
15. Comparing oxygen transfer performance between three membrane oxygenators: effect of temperature changes during cardiopulmonary bypass. Jegger D; Tevaearai HT; Mallabiabarrena I; Horisberger J; Seigneul I; von Segesser LK Artif Organs; 2007 Apr; 31(4):290-300. PubMed ID: 17437498 [TBL] [Abstract][Full Text] [Related]
16. Extracorporeal shunt: a theoretical approach to the prevention of arterial hyperoxia and the reduction of gaseous emboli during cardiopulmonary bypass. Weightman WM; Gibbs NM Anesth Analg; 1996 Mar; 82(3):672-3. PubMed ID: 8623987 [No Abstract] [Full Text] [Related]
17. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. De Somer F J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817 [TBL] [Abstract][Full Text] [Related]
18. A Novel Method to Detect an Oxygenator Defect Prior to Cardiopulmonary Bypass Initiation. Fernandes A; Laliberte E; Toledano K; Demers P J Extra Corpor Technol; 2015 Sep; 47(3):180-2. PubMed ID: 26543253 [TBL] [Abstract][Full Text] [Related]
19. Emergency use of extracorporeal membrane oxygenation in cardiopulmonary failure. Arlt M; Philipp A; Zimmermann M; Voelkel S; Amann M; Bein T; Müller T; Foltan M; Schmid C; Graf B; Hilker M Artif Organs; 2009 Sep; 33(9):696-703. PubMed ID: 19775261 [TBL] [Abstract][Full Text] [Related]