BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 23199023)

  • 1. Charge parametrization of the DvH-c3 heme group: validation using constant-(pH,E) molecular dynamics simulations.
    Henriques J; Costa PJ; Calhorda MJ; Machuqueiro M
    J Phys Chem B; 2013 Jan; 117(1):70-82. PubMed ID: 23199023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics at constant pH and reduction potential: application to cytochrome c(3).
    Machuqueiro M; Baptista AM
    J Am Chem Soc; 2009 Sep; 131(35):12586-94. PubMed ID: 19685871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations.
    Soares CM; Martel PJ; Mendes J; Carrondo MA
    Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics.
    Baptista AM; Martel PJ; Soares CM
    Biophys J; 1999 Jun; 76(6):2978-98. PubMed ID: 10354425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family.
    Blackledge MJ; Guerlesquin F; Marion D
    Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the reduction and protonation behavior of tetraheme cytochromes using atomic detail.
    Teixeira VH; Soares CM; Baptista AM
    J Biol Inorg Chem; 2002 Jan; 7(1-2):200-16. PubMed ID: 11862556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
    Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC
    J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-coupled conformational alternations in cytochrome c(3) from D. vulgaris Miyazaki F on the basis of its reduced solution structure.
    Harada E; Fukuoka Y; Ohmura T; Fukunishi A; Kawai G; Fujiwara T; Akutsu H
    J Mol Biol; 2002 Jun; 319(3):767-78. PubMed ID: 12054869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of Desulfovibrio africanus cytochrome c3 in oxidized and reduced forms.
    Bret C; Roth M; Nørager S; Hatchikian EC; Field MJ
    Biophys J; 2002 Dec; 83(6):3049-65. PubMed ID: 12496077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough).
    Saraiva LM; Salgueiro CA; da Costa PN; Messias AC; LeGall J; van Dongen WM; Xavier AV
    Biochemistry; 1998 Sep; 37(35):12160-5. PubMed ID: 9724528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F.
    Takayama Y; Harada E; Kobayashi R; Ozawa K; Akutsu H
    Biochemistry; 2004 Aug; 43(34):10859-66. PubMed ID: 15323546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for redox-Bohr and cooperative effects in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774: crystallographic and modeling studies of oxidized and reduced high-resolution structures at pH 7.6.
    Bento I; Matias PM; Baptista AM; da Costa PN; van Dongen WM; Saraiva LM; Schneider TR; Soares CM; Carrondo MA
    Proteins; 2004 Jan; 54(1):135-52. PubMed ID: 14705030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical force field parameters for the heme prosthetic group of cytochrome c.
    Autenrieth F; Tajkhorshid E; Baudry J; Luthey-Schulten Z
    J Comput Chem; 2004 Oct; 25(13):1613-22. PubMed ID: 15264255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F.
    Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H
    Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction.
    Kazanskaya I; Lexa D; Bruschi M; Chottard G
    Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus.
    Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M
    J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drastic influence of a single heme axial ligand replacement on the thermostability of cytochrome c3.
    Dolla A; Florens L; Bruschi M; Dudich IV; Makarov AA
    Biochem Biophys Res Commun; 1995 Jun; 211(3):742-7. PubMed ID: 7598701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of multihaem cytochromes.
    Soares CM; Baptista AM
    FEBS Lett; 2012 Mar; 586(5):510-8. PubMed ID: 22020220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site structure and dynamics of cytochrome c3 from Desulfovibrio gigas immobilized on electrodes.
    Simaan AJ; Murgida DH; Hildebrandt P
    Biopolymers; 2002; 67(4-5):331-4. PubMed ID: 12012460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.