BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23199121)

  • 1. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery.
    Santosh M; Panigrahi S; Bhattacharyya D; Sood AK; Maiti PK
    J Chem Phys; 2012 Feb; 136(6):065106. PubMed ID: 22360226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W; Zhu W; Krilov G
    J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.
    Hwu JR; Kapoor M; Li RY; Lin YC; Horng JC; Tsay SC
    Chem Asian J; 2014 Dec; 9(12):3408-12. PubMed ID: 25294777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations reveal single-stranded DNA (ssDNA) forms ordered structures upon adsorbing onto single-walled carbon nanotubes (SWCNT).
    Hinkle KR
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112343. PubMed ID: 35066312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On modeling biomolecular-surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces.
    Akdim B; Pachter R; Day PN; Kim SS; Naik RR
    Nanotechnology; 2012 Apr; 23(16):165703. PubMed ID: 22460916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube.
    Roxbury D; Jagota A; Mittal J
    J Am Chem Soc; 2011 Aug; 133(34):13545-50. PubMed ID: 21797248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for the functionalization of gamma-irradiated single wall carbon nanotubes with DNA.
    Jovanović SP; Marković ZM; Kleut DN; Romcević NZ; Trajković VS; Dramićanin MD; Todorović Marković BM
    Nanotechnology; 2009 Nov; 20(44):445602. PubMed ID: 19801777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion kinetics of small nucleotides through single walled carbon nanotube.
    Clavier A; Kraszewski S; Ramseyer C; Picaud F
    J Biotechnol; 2013 Mar; 164(1):13-8. PubMed ID: 23262130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the changes in the structure of α-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation.
    Balamurugan K; Gopalakrishnan R; Raman SS; Subramanian V
    J Phys Chem B; 2010 Nov; 114(44):14048-58. PubMed ID: 20923226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical understanding of single-stranded DNA assisted dispersion of graphene.
    Manna AK; Pati SK
    J Mater Chem B; 2013 Jan; 1(1):91-100. PubMed ID: 32260616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length.
    Kyakuno H; Matsuda K; Yahiro H; Inami Y; Fukuoka T; Miyata Y; Yanagi K; Maniwa Y; Kataura H; Saito T; Yumura M; Iijima S
    J Chem Phys; 2011 Jun; 134(24):244501. PubMed ID: 21721637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection.
    Wang Y; Wang P; Wang Y; He X; Wang K
    Talanta; 2015 Aug; 141():122-7. PubMed ID: 25966391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and Desorption of Single-Stranded DNA from Single-Walled Carbon Nanotubes.
    Shearer CJ; Yu L; Fenati R; Sibley AJ; Quinton JS; Gibson CT; Ellis AV; Andersson GG; Shapter JG
    Chem Asian J; 2017 Jul; 12(13):1625-1634. PubMed ID: 28407412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.
    Ghosh S; Patel N; Chakrabarti R
    J Phys Chem B; 2016 Jan; 120(3):455-66. PubMed ID: 26716359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.
    Dong L
    Nanotechnology; 2009 Nov; 20(46):465602. PubMed ID: 19843998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and electronic properties of "DNA-gold-nanotube" systems: a quantum chemical analysis.
    Pannopard P; Khongpracha P; Probst M; Limtrakul J
    J Mol Graph Model; 2008 Apr; 26(7):1066-75. PubMed ID: 17977037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.