These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23199337)

  • 1. Efficient oxidative debromination of decabromodiphenyl ether by TiO2-mediated photocatalysis in aqueous environment.
    Huang A; Wang N; Lei M; Zhu L; Zhang Y; Lin Z; Yin D; Tang H
    Environ Sci Technol; 2013 Jan; 47(1):518-25. PubMed ID: 23199337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic debromination of preloaded decabromodiphenyl ether on the TiO(2) surface in aqueous system.
    Sun C; Zhao J; Ji H; Ma W; Chen C
    Chemosphere; 2012 Oct; 89(4):420-5. PubMed ID: 22694774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO2-mediated photocatalytic debromination of decabromodiphenyl ether: kinetics and intermediates.
    Sun C; Zhao D; Chen C; Ma W; Zhao J
    Environ Sci Technol; 2009 Jan; 43(1):157-62. PubMed ID: 19209600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism.
    Fang Z; Qiu X; Chen J; Qiu X
    J Hazard Mater; 2011 Jan; 185(2-3):958-69. PubMed ID: 21035251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems - A review.
    Santos MSF; Alves A; Madeira LM
    Water Res; 2016 Jan; 88():39-59. PubMed ID: 26465809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid, photocatalytic, and deep debromination of polybrominated diphenyl ethers on Pd-TiO2: intermediates and pathways.
    Li L; Chang W; Wang Y; Ji H; Chen C; Ma W; Zhao J
    Chemistry; 2014 Aug; 20(35):11163-70. PubMed ID: 25066816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peculiar and rapid photocatalytic degradation of tetrabromodiphenyl ethers over Ag/TiO2 induced by interaction between silver nanoparticles and bromine atoms in the target.
    Lei M; Wang N; Zhu L; Tang H
    Chemosphere; 2016 May; 150():536-544. PubMed ID: 26546118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis.
    Hu L; Flanders PM; Miller PL; Strathmann TJ
    Water Res; 2007 Jun; 41(12):2612-26. PubMed ID: 17433403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of solvent on debromination of decabromodiphenyl ether by Ni/Fe nanoparticles and nano zero-valent iron particles.
    Tan L; Liang B; Cheng W; Fang Z; Tsang EP
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22172-22182. PubMed ID: 27544529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of intrinsic Mn
    Chai H; Zhang Z; Zhou Y; Zhu L; Lv H; Wang N
    Chemosphere; 2018 Sep; 207():41-49. PubMed ID: 29772423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic oxidation of organic pollutants on titania-clay composites.
    Ménesi J; Körösi L; Bazsó E; Zöllmer V; Richardt A; Dékány I
    Chemosphere; 2008 Jan; 70(3):538-42. PubMed ID: 17698167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wet air co-oxidation of decabromodiphenyl ether (BDE209) and tetrahydrofuran.
    Zhao H; Zhang F; Qu B; Xue X; Liang X
    J Hazard Mater; 2009 Sep; 169(1-3):1146-9. PubMed ID: 19395166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO(2)/BaTiO(3)-assisted photocatalytic mineralization of diclofop-methyl on UV-light irradiation in the presence of oxidizing agents.
    Gomathi Devi L; Krishnamurthy G
    J Hazard Mater; 2009 Mar; 162(2-3):899-905. PubMed ID: 18620806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates.
    Guo Y; Lou X; Xiao D; Xu L; Wang Z; Liu J
    J Hazard Mater; 2012 Nov; 241-242():301-6. PubMed ID: 23046696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and mechanism of TNT degradation in TiO2 photocatalysis.
    Son HS; Lee SJ; Cho IH; Zoh KD
    Chemosphere; 2004 Oct; 57(4):309-17. PubMed ID: 15312729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process.
    Xu XR; Li HB; Gu JD
    Chemosphere; 2006 Apr; 63(2):254-60. PubMed ID: 16169572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-catalyzed degradation of p-nitrophenol employing TiO2 and UV radiations.
    Shintre SN; Thakur PR
    J Environ Sci Eng; 2008 Oct; 50(4):299-302. PubMed ID: 19697765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave assisted rapid and complete degradation of atrazine using TiO(2) nanotube photocatalyst suspensions.
    Zhanqi G; Shaogui Y; Na T; Cheng S
    J Hazard Mater; 2007 Jul; 145(3):424-30. PubMed ID: 17188429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative debromination of 2,2-bis(bromomethyl)-1,3-propanediol by UV/persulfate process and corresponding formation of brominated by-products.
    Sun J; Chen Y; Xiang Y; Ling L; Fang J; Shang C
    Chemosphere; 2019 Aug; 228():735-743. PubMed ID: 31071560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions.
    Sharma VK; Graham NJ; Li XZ; Yuan BL
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):453-61. PubMed ID: 19495821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.