These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 23199516)
1. Interferon-γ activates expression of p15 and p16 regardless of 9p21.3 coronary artery disease risk genotype. Almontashiri NA; Fan M; Cheng BL; Chen HH; Roberts R; Stewart AF J Am Coll Cardiol; 2013 Jan; 61(2):143-7. PubMed ID: 23199516 [TBL] [Abstract][Full Text] [Related]
2. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Motterle A; Pu X; Wood H; Xiao Q; Gor S; Ng FL; Chan K; Cross F; Shohreh B; Poston RN; Tucker AT; Caulfield MJ; Ye S Hum Mol Genet; 2012 Sep; 21(18):4021-9. PubMed ID: 22706276 [TBL] [Abstract][Full Text] [Related]
3. Expression of Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in human atherosclerotic plaque. Holdt LM; Sass K; Gäbel G; Bergert H; Thiery J; Teupser D Atherosclerosis; 2011 Feb; 214(2):264-70. PubMed ID: 20637465 [TBL] [Abstract][Full Text] [Related]
4. 9p21.3 Coronary Artery Disease Risk Variants Disrupt TEAD Transcription Factor-Dependent Transforming Growth Factor β Regulation of p16 Expression in Human Aortic Smooth Muscle Cells. Almontashiri NA; Antoine D; Zhou X; Vilmundarson RO; Zhang SX; Hao KN; Chen HH; Stewart AF Circulation; 2015 Nov; 132(21):1969-78. PubMed ID: 26487755 [TBL] [Abstract][Full Text] [Related]
5. The 9p21 locus does not affect risk of coronary artery disease through induction of type 1 interferons. Erridge C; Gracey J; Braund PS; Samani NJ J Am Coll Cardiol; 2013 Oct; 62(15):1376-81. PubMed ID: 23933542 [TBL] [Abstract][Full Text] [Related]
6. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Harismendy O; Notani D; Song X; Rahim NG; Tanasa B; Heintzman N; Ren B; Fu XD; Topol EJ; Rosenfeld MG; Frazer KA Nature; 2011 Feb; 470(7333):264-8. PubMed ID: 21307941 [TBL] [Abstract][Full Text] [Related]
7. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Holdt LM; Beutner F; Scholz M; Gielen S; Gäbel G; Bergert H; Schuler G; Thiery J; Teupser D Arterioscler Thromb Vasc Biol; 2010 Mar; 30(3):620-7. PubMed ID: 20056914 [TBL] [Abstract][Full Text] [Related]
8. Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma. Worsham MJ; Chen KM; Tiwari N; Pals G; Schouten JP; Sethi S; Benninger MS Arch Otolaryngol Head Neck Surg; 2006 Apr; 132(4):409-15. PubMed ID: 16618910 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Jarinova O; Stewart AF; Roberts R; Wells G; Lau P; Naing T; Buerki C; McLean BW; Cook RC; Parker JS; McPherson R Arterioscler Thromb Vasc Biol; 2009 Oct; 29(10):1671-7. PubMed ID: 19592466 [TBL] [Abstract][Full Text] [Related]
10. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Hannou SA; Wouters K; Paumelle R; Staels B Trends Endocrinol Metab; 2015 Apr; 26(4):176-84. PubMed ID: 25744911 [TBL] [Abstract][Full Text] [Related]
11. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Congrains A; Kamide K; Oguro R; Yasuda O; Miyata K; Yamamoto E; Kawai T; Kusunoki H; Yamamoto H; Takeya Y; Yamamoto K; Onishi M; Sugimoto K; Katsuya T; Awata N; Ikebe K; Gondo Y; Oike Y; Ohishi M; Rakugi H Atherosclerosis; 2012 Feb; 220(2):449-55. PubMed ID: 22178423 [TBL] [Abstract][Full Text] [Related]
12. Genomic instability, mutations and expression analysis of the tumour suppressor genes p14(ARF), p15(INK4b), p16(INK4a) and p53 in actinic keratosis. Kanellou P; Zaravinos A; Zioga M; Stratigos A; Baritaki S; Soufla G; Zoras O; Spandidos DA Cancer Lett; 2008 Jun; 264(1):145-61. PubMed ID: 18331779 [TBL] [Abstract][Full Text] [Related]
13. CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia. Bertin R; Acquaviva C; Mirebeau D; Guidal-Giroux C; Vilmer E; Cavé H Genes Chromosomes Cancer; 2003 May; 37(1):44-57. PubMed ID: 12661005 [TBL] [Abstract][Full Text] [Related]
14. Resequencing and clinical associations of the 9p21.3 region: a comprehensive investigation in the Framingham heart study. Johnson AD; Hwang SJ; Voorman A; Morrison A; Peloso GM; Hsu YH; Thanassoulis G; Newton-Cheh C; Rogers IS; Hoffmann U; Freedman JE; Fox CS; Psaty BM; Boerwinkle E; Cupples LA; O'Donnell CJ Circulation; 2013 Feb; 127(7):799-810. PubMed ID: 23315372 [TBL] [Abstract][Full Text] [Related]
15. Chromosome 9p21 and cardiovascular disease: the story unfolds. Samani NJ; Schunkert H Circ Cardiovasc Genet; 2008 Dec; 1(2):81-4. PubMed ID: 20031549 [No Abstract] [Full Text] [Related]
16. Chromosome 9p21 and coronary artery disease. McPherson R N Engl J Med; 2010 May; 362(18):1736-7. PubMed ID: 20445187 [No Abstract] [Full Text] [Related]
17. Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. Zhuang J; Peng W; Li H; Wang W; Wei Y; Li W; Xu Y PLoS One; 2012; 7(10):e47193. PubMed ID: 23091611 [TBL] [Abstract][Full Text] [Related]
18. Molecular analysis of P16(Ink4)/CDKN2 and P15(INK4B)/MTS2 genes in primary human testicular germ cell tumors. Heidenreich A; Gaddipati JP; Moul JW; Srivastava S J Urol; 1998 May; 159(5):1725-30. PubMed ID: 9554401 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of 9p21 deletions shows a minimal common deleted region removing CDKN2A exon 1 and CDKN2B exon 2 in diffuse large B-cell lymphomas. Guney S; Bertrand P; Jardin F; Ruminy P; Kerckaert JP; Tilly H; Bastard C Genes Chromosomes Cancer; 2011 Sep; 50(9):715-25. PubMed ID: 21638516 [TBL] [Abstract][Full Text] [Related]