BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23200092)

  • 21. Interpreting coronary artery disease GWAS results: A functional genomics approach assessing biological significance.
    Hartmann K; Seweryn M; Sadee W
    PLoS One; 2022; 17(2):e0244904. PubMed ID: 35192625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic study of complex diseases in the post-GWAS era.
    Huang Q
    J Genet Genomics; 2015 Mar; 42(3):87-98. PubMed ID: 25819085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical and Functional Studies Identify Epistasis of Cardiovascular Risk Genomic Variants From Genome-Wide Association Studies.
    Li Y; Cho H; Wang F; Canela-Xandri O; Luo C; Rawlik K; Archacki S; Xu C; Tenesa A; Chen Q; Wang QK
    J Am Heart Assoc; 2020 Apr; 9(7):e014146. PubMed ID: 32237974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rare variants and cardiovascular disease.
    Wain LV
    Brief Funct Genomics; 2014 Sep; 13(5):384-91. PubMed ID: 24771349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetics 100 for cardiologists: basics of genome-wide association studies.
    Dubé JB; Hegele RA
    Can J Cardiol; 2013 Jan; 29(1):10-7. PubMed ID: 23200095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pro: Genome-wide association studies (GWAS) in asthma.
    Weiss ST; Silverman EK
    Am J Respir Crit Care Med; 2011 Sep; 184(6):631-3. PubMed ID: 21920925
    [No Abstract]   [Full Text] [Related]  

  • 27. From Genotype to Phenotype: A Primer on the Functional Follow-up of Genome-Wide Association Studies in Cardiovascular Disease.
    Lin J; Musunuru K
    Circ Genom Precis Med; 2018 Feb; 11(2):. PubMed ID: 29915816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contribution of non-coding regulatory elements to cardiovascular disease.
    Villar D; Frost S; Deloukas P; Tinker A
    Open Biol; 2020 Jul; 10(7):200088. PubMed ID: 32603637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide association studies of cancer: principles and potential utility.
    Stadler ZK; Gallagher DJ; Thom P; Offit K
    Oncology (Williston Park); 2010 Jun; 24(7):629-37. PubMed ID: 20669800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling Difficult Answers: From Genotype to Phenotype in Coronary Artery Disease.
    Magdy T; Burridge PW
    Cell Stem Cell; 2019 Feb; 24(2):203-205. PubMed ID: 30735646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges and progress in interpretation of non-coding genetic variants associated with human disease.
    Zhu Y; Tazearslan C; Suh Y
    Exp Biol Med (Maywood); 2017 Jul; 242(13):1325-1334. PubMed ID: 28581336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applying in silico integrative genomics to genetic studies of human disease.
    Saccone SF
    Int Rev Neurobiol; 2012; 103():133-56. PubMed ID: 23195124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic Susceptibility Contributing to Periodontal and Cardiovascular Disease.
    Aarabi G; Zeller T; Seedorf H; Reissmann DR; Heydecke G; Schaefer AS; Seedorf U
    J Dent Res; 2017 Jun; 96(6):610-617. PubMed ID: 28530468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the genetic basis of coronary artery disease using functional genomics.
    López Rodríguez M; Arasu UT; Kaikkonen MU
    Atherosclerosis; 2023 Jun; 374():87-98. PubMed ID: 36801133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The miRNA targetome of coronary artery disease is perturbed by functional polymorphisms identified and prioritized by in-depth bioinformatics analyses exploiting genome-wide association studies.
    Bastami M; Nariman-Saleh-Fam Z; Saadatian Z; Nariman-Saleh-Fam L; Omrani MD; Ghaderian SMH; Masotti A
    Gene; 2016 Dec; 594(1):74-81. PubMed ID: 27596011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying functional noncoding variants from genome-wide association studies for cardiovascular disease and related traits.
    Smith AJ; Humphries SE; Talmud PJ
    Curr Opin Lipidol; 2015 Apr; 26(2):120-6. PubMed ID: 25692342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convolutional neural network model to predict causal risk factors that share complex regulatory features.
    Lee T; Sung MK; Lee S; Yang W; Oh J; Kim JY; Hwang S; Ban HJ; Choi JK
    Nucleic Acids Res; 2019 Dec; 47(22):e146. PubMed ID: 31598692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using DIVAN to assess disease/trait-associated single nucleotide variants in genome-wide scale.
    Chen L; Qin ZS
    BMC Res Notes; 2017 Oct; 10(1):530. PubMed ID: 29084591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional annotation of HOT regions in the human genome: implications for human disease and cancer.
    Li H; Chen H; Liu F; Ren C; Wang S; Bo X; Shu W
    Sci Rep; 2015 Jun; 5():11633. PubMed ID: 26113264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide genotype-serum proteome mapping provides insights into the cross-ancestry differences in cardiometabolic disease susceptibility.
    Xu F; Yu EY; Cai X; Yue L; Jing LP; Liang X; Fu Y; Miao Z; Yang M; Shuai M; Gou W; Xiao C; Xue Z; Xie Y; Li S; Lu S; Shi M; Wang X; Hu W; Langenberg C; Yang J; Chen YM; Guo T; Zheng JS
    Nat Commun; 2023 Feb; 14(1):896. PubMed ID: 36797296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.