These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 23200196)

  • 21. Maximizing genetic response in breeding schemes of dairy cattle with constraints on variance of response.
    Meuwissen TH; Woolliams JA
    J Dairy Sci; 1994 Jul; 77(7):1905-16. PubMed ID: 7929952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic selection strategies in dairy cattle: Strong positive interaction between use of genotypic information and intensive use of young bulls on genetic gain.
    Buch LH; Sørensen MK; Berg P; Pedersen LD; Sørensen AC
    J Anim Breed Genet; 2012 Apr; 129(2):138-51. PubMed ID: 22394236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit.
    Thomasen JR; Egger-Danner C; Willam A; Guldbrandtsen B; Lund MS; Sørensen AC
    J Dairy Sci; 2014; 97(1):458-70. PubMed ID: 24239076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable dairy cattle selection in the genomic era.
    Boichard D; Ducrocq V; Fritz S
    J Anim Breed Genet; 2015 Apr; 132(2):135-43. PubMed ID: 25736218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of a breeding scheme combined by genomic pre-selection and progeny testing on annual genetic gain in a dairy cattle population.
    Yamazaki T; Togashi K; Iwama S; Matsumoto S; Moribe K; Nakanishi T; Hagiya K; Hayasaka K
    Anim Sci J; 2014 Jun; 85(6):639-49. PubMed ID: 24612342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the genetic trend of milk yield in the multiple ovulation and embryo transfer populations of dairy cows, using stochastic simulation.
    Hossein-Zadeh NG
    C R Biol; 2010 Oct; 333(10):710-5. PubMed ID: 20965440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic selection in dairy cattle simulated populations.
    Seno LO; Guidolin DGF; Aspilcueta-Borquis RR; Nascimento GBD; Silva TBRD; Oliveira HN; Munari DP
    J Dairy Res; 2018 May; 85(2):125-132. PubMed ID: 29785919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benefits of cooperation between breeding programs in the presence of genotype by environment interaction.
    Mulder HA; Bijma P
    J Dairy Sci; 2006 May; 89(5):1727-39. PubMed ID: 16606744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Derivation of sustainable breeding goals for dairy cattle using selection index theory.
    Nielsen HM; Christensen LG; Groen AF
    J Dairy Sci; 2005 May; 88(5):1882-90. PubMed ID: 15829683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal strategies for the use of genomic selection in dairy cattle breeding programs.
    Wensch-Dorendorf M; Yin T; Swalve HH; König S
    J Dairy Sci; 2011 Aug; 94(8):4140-51. PubMed ID: 21787949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reproductive technologies combine well with genomic selection in dairy breeding programs.
    Thomasen JR; Willam A; Egger-Danner C; Sørensen AC
    J Dairy Sci; 2016 Feb; 99(2):1331-1340. PubMed ID: 26686703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic selection using indicator traits to reduce the environmental impact of milk production.
    Axelsson HH; Fikse WF; Kargo M; Sørensen AC; Johansson K; Rydhmer L
    J Dairy Sci; 2013 Aug; 96(8):5306-14. PubMed ID: 23726422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superiority of QTL-assisted selection in dairy cattle breeding schemes.
    Abdel-Azim G; Freeman AE
    J Dairy Sci; 2002 Jul; 85(7):1869-80. PubMed ID: 12201538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicted accuracy of and response to genomic selection for new traits in dairy cattle.
    Calus MP; de Haas Y; Pszczola M; Veerkamp RF
    Animal; 2013 Feb; 7(2):183-91. PubMed ID: 23031684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of closed adult nucleus multiple ovulation and embryo transfer and conventional progeny testing breeding schemes for milk production in tropical crossbred cattle.
    Kosgey IS; Kahi AK; Van Arendonk JA
    J Dairy Sci; 2005 Apr; 88(4):1582-94. PubMed ID: 15778328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic modeling of multiple ovulation and embryo transfer breeding schemes in small closed dairy cattle populations.
    Jeon GJ; Mao IL; Jensen J; Ferris TA
    J Dairy Sci; 1990 Jul; 73(7):1938-44. PubMed ID: 2229596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic selection for health traits using producer-recorded data. II. Genetic correlations, disease probabilities, and relationships with existing traits.
    Zwald NR; Weigel KA; Chang YM; Welper RD; Clay JS
    J Dairy Sci; 2004 Dec; 87(12):4295-302. PubMed ID: 15545393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consequences of selection for yield traits on calving ease performance.
    López de Maturana E; Ugarte E; Komen J; van Arendonk JA
    J Dairy Sci; 2007 May; 90(5):2497-505. PubMed ID: 17430954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method to define breeding goals for sustainable dairy cattle production.
    Nielsen HM; Christensen LG; Odegård J
    J Dairy Sci; 2006 Sep; 89(9):3615-25. PubMed ID: 16899697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.