BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23200393)

  • 1. Mathematical model and computer simulation on moving precipitate boundary electrophoresis for offline sample pre- concentration of heavy metal ion.
    Chang J; Zhang J; Wang HY; Fan LY; Fan YP; Li S; Cao CX
    Talanta; 2013 Jan; 103():314-21. PubMed ID: 23200393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual offline sample stacking via moving neutralization boundary electrophoresis for analysis of heavy metal ion.
    Fan Y; Li S; Fan L; Cao C
    Talanta; 2012 Jun; 95():42-9. PubMed ID: 22748554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation on a continuous moving chelation boundary in ethylenediaminetetraacetic acid-based sample sweeping in capillary electrophoresis.
    Jin J; Shao J; Li S; Zhang W; Fan LY; Cao CX
    J Chromatogr A; 2009 Jun; 1216(24):4913-22. PubMed ID: 19439312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration.
    Cao CX; Fan LY; Zhang W
    Analyst; 2008 Sep; 133(9):1139-57. PubMed ID: 18709186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative investigations on moving chelation boundary within a continuous EDTA-based sample sweeping system in capillary electrophoresis.
    Fan L; Li C; Zhang W; Cao C; Zhou P; Deng Z
    Electrophoresis; 2008 Oct; 29(19):3989-98. PubMed ID: 18958891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter.
    Wang J; Huang CP; Allen HE
    Water Res; 2003 Dec; 37(20):4835-42. PubMed ID: 14604629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamidoamine dendrimers as sweeping agent and stationary phase for rapid and sensitive open-tubular capillary electrophoretic determination of heavy metal ions.
    Ge Y; Guo Y; Qin W
    Talanta; 2014 Apr; 121():50-5. PubMed ID: 24607109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model and dynamic computer simulation on free flow zone electrophoresis.
    Zhang J; Yan J; Li S; Pang B; Guo CG; Cao CX; Jin XQ
    Analyst; 2013 Oct; 138(19):5734-44. PubMed ID: 23923124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations.
    Tuzen M; Soylak M
    J Hazard Mater; 2009 Mar; 162(2-3):724-9. PubMed ID: 18584957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stump-like mathematical model and computer simulation on dynamic separation of capillary zone electrophoresis with different sample injections.
    Zhang J; Huang QF; Jin J; Chang J; Li S; Fan LY; Cao CX
    Talanta; 2013 Feb; 105():278-86. PubMed ID: 23598020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental studies on isotachophoresis in multi-moving chelation boundary system formed with metal ions and EDTA.
    Zhang W; Guo CG; Fan LY; Cao CX
    Analyst; 2013 Sep; 138(17):5039-51. PubMed ID: 23806973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of separation of heavy metals by capillary electrophoresis with contactless conductivity detection.
    Lau HF; Quek NM; Law WS; Zhao JH; Hauser PC; Li SF
    Electrophoresis; 2011 May; 32(10):1190-4. PubMed ID: 21500211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection.
    Kubáň P; Strieglerová L; Gebauer P; Boček P
    Electrophoresis; 2011 Apr; 32(9):1025-32. PubMed ID: 21449072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved method for determination of heavy metal bioavailability in contaminated soil.
    Lin SH; Lai SL; Leu HG
    Environ Technol; 2001 Jun; 22(6):731-9. PubMed ID: 11482394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective rates of heavy metal release from alkaline wastes--quantified by column outflow experiments and inverse simulations.
    Wehrer M; Totsche KU
    J Contam Hydrol; 2008 Oct; 101(1-4):53-66. PubMed ID: 18757112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous separation of copper ions from a mixture of heavy metal ions using a three-zone carousel process packed with metal ion-imprinted polymer.
    Jo SH; Lee SY; Park KM; Yi SC; Kim D; Mun S
    J Chromatogr A; 2010 Nov; 1217(45):7100-8. PubMed ID: 20932527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-concentration and separation of heavy metal ions by chemically modified waste paper gel.
    Adhikari CR; Parajuli D; Inoue K; Ohto K; Kawakita H
    Chemosphere; 2008 May; 72(2):182-8. PubMed ID: 18355892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal analysis with capillary zone electrophoresis.
    Malik AK
    Methods Mol Biol; 2008; 384():21-42. PubMed ID: 18392564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metals binding to biosorbents. Insights into Non-competitive models from a simple pH-dependent model.
    Plazinski W; Rudzinski W
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):133-7. PubMed ID: 20580211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel isotachophoresis of cobalt and copper complexes by metal ion substitution reaction in a continuous moving chelation boundary.
    Zhang W; Chen JF; Fan LY; Cao CX; Ren JC; Li S; Shao J
    Analyst; 2010 Jan; 135(1):140-8. PubMed ID: 20024194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.