BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23200902)

  • 1. Peroxynitrite--altered platelet mitochondria--a new link between inflammation and hemostasis.
    Misztal T; Przesław K; Rusak T; Tomasiak M
    Thromb Res; 2013 Jan; 131(1):e17-25. PubMed ID: 23200902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxynitrite may affect clot retraction in human blood through the inhibition of platelet mitochondrial energy production.
    Misztal T; Rusak T; Tomasiak M
    Thromb Res; 2014 Mar; 133(3):402-11. PubMed ID: 24388569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxynitrite may affect fibrinolysis via the reduction of platelet-related fibrinolysis resistance and alteration of clot structure.
    Misztal T; Rusak T; Brańska-Januszewska J; Ostrowska H; Tomasiak M
    Free Radic Biol Med; 2015 Dec; 89():533-47. PubMed ID: 26454084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinically relevant HOCl concentrations reduce clot retraction rate via the inhibition of energy production in platelet mitochondria.
    Misztal T; Rusak T; Tomasiak M
    Free Radic Res; 2014 Dec; 48(12):1443-53. PubMed ID: 25236568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxynitrite can affect platelet responses by inhibiting energy production.
    Rusak T; Tomasiak M; Ciborowski M
    Acta Biochim Pol; 2006; 53(4):769-76. PubMed ID: 17068635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced clot retraction rate and altered platelet energy production in patients with asthma.
    Tomasiak-Lozowska MM; Rusak T; Misztal T; Bodzenta-Lukaszyk A; Tomasiak M
    J Asthma; 2016 Aug; 53(6):589-98. PubMed ID: 27145190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myeloperoxidase product, hypochlorous acid, reduces thrombus formation under flow and attenuates clot retraction and fibrinolysis in human blood.
    Misztal T; Golaszewska A; Tomasiak-Lozowska MM; Iwanicka M; Marcinczyk N; Leszczynska A; Chabielska E; Rusak T
    Free Radic Biol Med; 2019 Sep; 141():426-437. PubMed ID: 31279970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clot lysis time in platelet-rich plasma: method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid.
    Panes O; Padilla O; Matus V; Sáez CG; Berkovits A; Pereira J; Mezzano D
    Platelets; 2012; 23(1):36-44. PubMed ID: 21787173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide and platelet energy metabolism.
    Tomasiak M; Stelmach H; Rusak T; Wysocka J
    Acta Biochim Pol; 2004; 51(3):789-803. PubMed ID: 15448739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid dissociation of platelet-rich fibrin clots in vitro by a combination of plasminogen activators and antiplatelet agents.
    Lam SC; Dieter JP; Strebel LC; Taylor TM; Muscolino G; Feinberg H; Le Breton GC
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1371-8. PubMed ID: 1762085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of rat platelet aggregation by mycalolide-B, a novel inhibitor of actin polymerization with a different mechanism of action from cytochalasin-D.
    Sugidachi A; Ogawa T; Asai F; Saito S; Ozaki H; Fusetani N; Karaki H; Koike H
    Thromb Haemost; 1998 Mar; 79(3):614-9. PubMed ID: 9531051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in-vitro effect of tirofiban, glycoprotein IIb/IIIa antagonist, on various responses of porcine blood platelets.
    Ciborowski M; Tomasiak M; Rusak T; Winnicka K; Dobrzycki S
    Blood Coagul Fibrinolysis; 2008 Sep; 19(6):557-67. PubMed ID: 18685439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of fibrinogen levels on thromboelastometric variables in the presence of thrombocytopenia.
    Lang T; Johanning K; Metzler H; Piepenbrock S; Solomon C; Rahe-Meyer N; Tanaka KA
    Anesth Analg; 2009 Mar; 108(3):751-8. PubMed ID: 19224779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of cytochalasin B on platelet release, aggregation and contractility: evidence against a contractile mechanism for the release of platelet granular contents.
    Kirkpatrick JP; McIntire LV; Moake JL; Cimo PL
    Thromb Haemost; 1980 Feb; 42(5):1483-9. PubMed ID: 6892735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro inhibition of factor XIII retards clot formation, reduces clot firmness, and increases fibrinolytic effects in whole blood.
    Jámbor C; Reul V; Schnider TW; Degiacomi P; Metzner H; Korte WC
    Anesth Analg; 2009 Oct; 109(4):1023-8. PubMed ID: 19762725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Physiological and clinical significance of blood clot retraction (review of the literature)].
    Iakunin GA
    Lab Delo; 1984; (8):451-6. PubMed ID: 6207361
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro comparative study of hemostatic components in warfarin-treated and fibrinogen-deficient plasma.
    Rumph B; Bolliger D; Narang N; Molinaro RJ; Levy JH; Szlam F; Tanaka KA
    J Cardiothorac Vasc Anesth; 2010 Jun; 24(3):408-12. PubMed ID: 19819728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of fibrin clots and clot-bound thrombin on the development of platelet procoagulant activity.
    Kumar R; Béguin S; Hemker HC
    Thromb Haemost; 1995 Sep; 74(3):962-8. PubMed ID: 8571330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet microtubules in clot structure formation and contractile force generation: investigation of a controversy.
    Jen CJ; McIntire LV
    Thromb Haemost; 1986 Aug; 56(1):23-7. PubMed ID: 2877507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet-related fibrinolysis resistance in patients suffering from PV. Impact of clot retraction and isovolemic erythrocytapheresis.
    Rusak T; Piszcz J; Misztal T; Brańska-Januszewska J; Tomasiak M
    Thromb Res; 2014 Jul; 134(1):192-8. PubMed ID: 24824295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.