BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23200992)

  • 1. Tracking shallow chemical gradients by actin-driven wandering of the polarization site.
    Dyer JM; Savage NS; Jin M; Zyla TR; Elston TC; Lew DJ
    Curr Biol; 2013 Jan; 23(1):32-41. PubMed ID: 23200992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Polarized G Protein Signaling in Tracking Pheromone Gradients.
    McClure AW; Minakova M; Dyer JM; Zyla TR; Elston TC; Lew DJ
    Dev Cell; 2015 Nov; 35(4):471-82. PubMed ID: 26609960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemotactic movement of a polarity site enables yeast cells to find their mates.
    Ghose D; Jacobs K; Ramirez S; Elston T; Lew D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic and pheromone-specific intrinsic polarization cues interfere with gradient sensing in
    Vasen G; Dunayevich P; Colman-Lerner A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6580-6589. PubMed ID: 32152126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction.
    Moore TI; Tanaka H; Kim HJ; Jeon NL; Yi TM
    Mol Biol Cell; 2013 Feb; 24(4):521-34. PubMed ID: 23242998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine.
    Wang X; Tian W; Banh BT; Statler BM; Liang J; Stone DE
    J Cell Biol; 2019 Nov; 218(11):3730-3752. PubMed ID: 31570500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into actin-driven polarity site movement in yeast.
    Ghose D; Lew D
    Mol Biol Cell; 2020 May; 31(10):1085-1102. PubMed ID: 32186970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.
    Ismael A; Tian W; Waszczak N; Wang X; Cao Y; Suchkov D; Bar E; Metodiev MV; Liang J; Arkowitz RA; Stone DE
    Sci Signal; 2016 Apr; 9(423):ra38. PubMed ID: 27072657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cellular System for Spatial Signal Decoding in Chemical Gradients.
    Hegemann B; Unger M; Lee SS; Stoffel-Studer I; van den Heuvel J; Pelet S; Koeppl H; Peter M
    Dev Cell; 2015 Nov; 35(4):458-70. PubMed ID: 26585298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient tracking in mating yeast depends on Bud1 inactivation and actin-independent vesicle delivery.
    Wang X; Pai CY; Stone DE
    J Cell Biol; 2022 Dec; 221(12):. PubMed ID: 36156058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization of the yeast pheromone receptor requires its internalization but not actin-dependent secretion.
    Suchkov DV; DeFlorio R; Draper E; Ismael A; Sukumar M; Arkowitz R; Stone DE
    Mol Biol Cell; 2010 May; 21(10):1737-52. PubMed ID: 20335504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity.
    Fairn GD; Hermansson M; Somerharju P; Grinstein S
    Nat Cell Biol; 2011 Oct; 13(12):1424-30. PubMed ID: 21964439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating.
    Butty AC; Pryciak PM; Huang LS; Herskowitz I; Peter M
    Science; 1998 Nov; 282(5393):1511-6. PubMed ID: 9822386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise filtering tradeoffs in spatial gradient sensing and cell polarization response.
    Chou CS; Bardwell L; Nie Q; Yi TM
    BMC Syst Biol; 2011 Dec; 5():196. PubMed ID: 22166067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase.
    Wedlich-Soldner R; Altschuler S; Wu L; Li R
    Science; 2003 Feb; 299(5610):1231-5. PubMed ID: 12560471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.
    Muller N; Piel M; Calvez V; Voituriez R; Gonçalves-Sá J; Guo CL; Jiang X; Murray A; Meunier N
    PLoS Comput Biol; 2016 Apr; 12(4):e1004795. PubMed ID: 27077831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylated Gβ is a directional cue during yeast gradient tracking.
    Abdul-Ganiyu R; Venegas LA; Wang X; Puerner C; Arkowitz RA; Kay BK; Stone DE
    Sci Signal; 2021 May; 14(682):. PubMed ID: 33975981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell polarity: wanderful exploration in yeast sex.
    Arkowitz RA
    Curr Biol; 2013 Jan; 23(1):R10-2. PubMed ID: 23305660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ratiometric GPCR signaling enables directional sensing in yeast.
    Henderson NT; Pablo M; Ghose D; Clark-Cotton MR; Zyla TR; Nolen J; Elston TC; Lew DJ
    PLoS Biol; 2019 Oct; 17(10):e3000484. PubMed ID: 31622333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation.
    Pablo M; Ramirez SA; Elston TC
    PLoS Comput Biol; 2018 Mar; 14(3):e1006016. PubMed ID: 29529021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.