BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23201445)

  • 21. L-type Ca2+ channels mediate adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the ventral tegmental area after chronic amphetamine treatment.
    Rajadhyaksha A; Husson I; Satpute SS; Küppenbender KD; Ren JQ; Guerriero RM; Standaert DG; Kosofsky BE
    J Neurosci; 2004 Aug; 24(34):7464-76. PubMed ID: 15329393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory.
    Sweatt JD
    J Neurochem; 2001 Jan; 76(1):1-10. PubMed ID: 11145972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous infusion of substance P into rat striatum alleviates nociceptive behavior via phosphorylation of extracellular signal-regulated kinase 1/2.
    Nakamura Y; Izumi H; Fukushige R; Shimizu T; Watanabe K; Morioka N; Hama A; Takamatsu H; Nakata Y
    J Neurochem; 2014 Dec; 131(6):755-66. PubMed ID: 25175638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system.
    Oliveira CS; Rigon AP; Leal RB; Rossi FM
    Int J Dev Neurosci; 2008; 26(3-4):355-62. PubMed ID: 18280691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential Activation of Mitogen-Activated Protein Kinases, ERK 1/2, p38(MAPK) and JNK p54/p46 During Postnatal Development of Rat Hippocampus.
    Costa AP; Lopes MW; Rieger DK; Barbosa SG; Gonçalves FM; Xikota JC; Walz R; Leal RB
    Neurochem Res; 2016 May; 41(5):1160-9. PubMed ID: 26700434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sustained extracellular signal-regulated kinase 1/2 phosphorylation in neonate 6-hydroxydopamine-lesioned rats after repeated D1-dopamine receptor agonist administration: implications for NMDA receptor involvement.
    Papadeas ST; Blake BL; Knapp DJ; Breese GR
    J Neurosci; 2004 Jun; 24(26):5863-76. PubMed ID: 15229233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased limbic phosphorylated extracellular-regulated kinase 1 and 2 expression after chronic stress is reduced by cyclic 17beta-estradiol administration.
    Gerrits M; Westenbroek C; Koch T; Grootkarzijn A; ter Horst GJ
    Neuroscience; 2006 Nov; 142(4):1293-302. PubMed ID: 16934944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain.
    Mao LM; Wang HH; Wang JQ
    Neurochem Res; 2017 Apr; 42(4):1202-1210. PubMed ID: 28032295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine.
    Ortiz J; Harris HW; Guitart X; Terwilliger RZ; Haycock JW; Nestler EJ
    J Neurosci; 1995 Feb; 15(2):1285-97. PubMed ID: 7532701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracellular signal-regulated kinase 2 has duality in function between neuronal and astrocyte expression following neonatal hypoxic-ischaemic cerebral injury.
    Thei L; Rocha-Ferreira E; Peebles D; Raivich G; Hristova M
    J Physiol; 2018 Dec; 596(23):6043-6062. PubMed ID: 29873394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of extracellular signal-regulated protein kinases is associated with a sensitized locomotor response to D(2) dopamine receptor stimulation in unilateral 6-hydroxydopamine-lesioned rats.
    Cai G; Zhen X; Uryu K; Friedman E
    J Neurosci; 2000 Mar; 20(5):1849-57. PubMed ID: 10684886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of Group I Metabotropic Glutamate Receptors by MAPK/ERK in Neurons.
    Mao LM; Wang JQ
    J Nat Sci; 2016; 2(12):. PubMed ID: 28008418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neonatal ventral hippocampus lesion leads to reductions in nerve growth factor inducible-B mRNA in the prefrontal cortex and increased amphetamine response in the nucleus accumbens and dorsal striatum.
    Bhardwaj SK; Beaudry G; Quirion R; Levesque D; Srivastava LK
    Neuroscience; 2003; 122(3):669-76. PubMed ID: 14622910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clozapine induction of ERK1/2 cell signalling via the EGF receptor in mouse prefrontal cortex and striatum is distinct from other antipsychotic drugs.
    Pereira A; Sugiharto-Winarno A; Zhang B; Malcolm P; Fink G; Sundram S
    Int J Neuropsychopharmacol; 2012 Sep; 15(8):1149-60. PubMed ID: 21943960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic ERK2 Phosphorylates and Regulates Metabotropic Glutamate Receptor 1 In Vitro and in Neurons.
    Yang JH; Mao LM; Choe ES; Wang JQ
    Mol Neurobiol; 2017 Nov; 54(9):7156-7170. PubMed ID: 27796752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel Ca2+-independent signaling pathway to extracellular signal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons.
    Yang L; Mao L; Tang Q; Samdani S; Liu Z; Wang JQ
    J Neurosci; 2004 Dec; 24(48):10846-57. PubMed ID: 15574735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A sensitizing d-amphetamine regimen induces long-lasting spinophilin protein upregulation in the rat striatum and limbic forebrain.
    Boikess SR; Marshall JF
    Eur J Neurosci; 2008 Nov; 28(10):2099-107. PubMed ID: 19046390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paradoxical striatal cellular signaling responses to psychostimulants in hyperactive mice.
    Beaulieu JM; Sotnikova TD; Gainetdinov RR; Caron MG
    J Biol Chem; 2006 Oct; 281(43):32072-80. PubMed ID: 16954211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The anterior cingulate ERK pathway contributes to regulation of behavioral excitement and hedonic activity.
    Creson TK; Hao Y; Engel S; Shen Y; Hamidi A; Zhuo M; Manji HK; Chen G
    Bipolar Disord; 2009 Jun; 11(4):339-50. PubMed ID: 19500087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants.
    Corvol JC; Valjent E; Pascoli V; Robin A; Stipanovich A; Luedtke RR; Belluscio L; Girault JA; Hervé D
    Neuropsychopharmacology; 2007 May; 32(5):1109-21. PubMed ID: 17063155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.