These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 23201628)
1. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Kim JK; Seo SJ; Kim HT; Kim KH; Chung MH; Kim KR; Ye SJ Phys Med Biol; 2012 Dec; 57(24):8309-23. PubMed ID: 23201628 [TBL] [Abstract][Full Text] [Related]
2. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Kim JK; Seo SJ; Kim KH; Kim TJ; Chung MH; Kim KR; Yang TK Nanotechnology; 2010 Oct; 21(42):425102. PubMed ID: 20858930 [TBL] [Abstract][Full Text] [Related]
3. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value. Seo SJ; Jeon JK; Han SM; Kim JK Int J Radiat Biol; 2017 Nov; 93(11):1239-1247. PubMed ID: 28752783 [TBL] [Abstract][Full Text] [Related]
4. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Seo SJ; Han SM; Cho JH; Hyodo K; Zaboronok A; You H; Peach K; Hill MA; Kim JK Radiat Environ Biophys; 2015 Nov; 54(4):423-31. PubMed ID: 26242374 [TBL] [Abstract][Full Text] [Related]
5. Coulomb nanoradiator-mediated, site-specific thrombolytic proton treatment with a traversing pristine Bragg peak. Jeon JK; Han SM; Min SK; Seo SJ; Ihm K; Chang WS; Kim JK Sci Rep; 2016 Nov; 6():37848. PubMed ID: 27897205 [TBL] [Abstract][Full Text] [Related]
6. Increased cure rate of glioblastoma using concurrent therapy with radiotherapy and arsenic trioxide. Ning S; Knox SJ Int J Radiat Oncol Biol Phys; 2004 Sep; 60(1):197-203. PubMed ID: 15337556 [TBL] [Abstract][Full Text] [Related]
7. Photon activated therapy (PAT) using monochromatic synchrotron X-rays and iron oxide nanoparticles in a mouse tumor model: feasibility study of PAT for the treatment of superficial malignancy. Choi GH; Seo SJ; Kim KH; Kim HT; Park SH; Lim JH; Kim JK Radiat Oncol; 2012 Oct; 7():184. PubMed ID: 23111059 [TBL] [Abstract][Full Text] [Related]
8. Comparison of proton and electron radiation effects on biological responses in liver, spleen and blood. Gridley DS; Freeman TL; Makinde AY; Wroe AJ; Luo-Owen X; Tian J; Mao XW; Rightnar S; Kennedy AR; Slater JM; Pecaut MJ Int J Radiat Biol; 2011 Dec; 87(12):1173-81. PubMed ID: 22035456 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Martínez-Rovira I; Prezado Y Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760 [TBL] [Abstract][Full Text] [Related]
10. [Choroidal melanoma stage T1 - comparison of the planning protocol for stereotactic radiosurgery and proton beam irradiation]. Furdová A; Růžička J; Sramka M; Králik G; Chorváth M; Kusenda P Cesk Slov Oftalmol; 2012 Oct; 68(4):156-61. PubMed ID: 23214488 [TBL] [Abstract][Full Text] [Related]
11. Modification of gamma radiation induced response of peritoneal macrophages and splenocytes by Hippophae rhamnoides (RH-3) in mice. Prakash H; Bala M; Ali A; Goel HC J Pharm Pharmacol; 2005 Aug; 57(8):1065-72. PubMed ID: 16102264 [TBL] [Abstract][Full Text] [Related]
12. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement. Cho J; Gonzalez-Lepera C; Manohar N; Kerr M; Krishnan S; Cho SH Phys Med Biol; 2016 Mar; 61(6):2562-81. PubMed ID: 26952844 [TBL] [Abstract][Full Text] [Related]
13. Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Nakayama M; Sasaki R; Ogino C; Tanaka T; Morita K; Umetsu M; Ohara S; Tan Z; Nishimura Y; Akasaka H; Sato K; Numako C; Takami S; Kondo A Radiat Oncol; 2016 Jul; 11(1):91. PubMed ID: 27386977 [TBL] [Abstract][Full Text] [Related]
14. Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways. Lee KB; Kim KR; Huh TL; Lee YM Int J Oncol; 2008 Dec; 33(6):1247-56. PubMed ID: 19020758 [TBL] [Abstract][Full Text] [Related]
15. Comparison of multiple bolus and continuous injections of 131I-labeled CC49 for therapy in a colon cancer xenograft model. Buchsbaum DJ; Khazaeli MB; Mayo MS; Roberson PL Clin Cancer Res; 1999 Oct; 5(10 Suppl):3153s-3159s. PubMed ID: 10541357 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of monoclonal antibody uptake in human colon tumor xenografts following irradiation. Kalofonos H; Rowlinson G; Epenetos AA Cancer Res; 1990 Jan; 50(1):159-63. PubMed ID: 2403414 [TBL] [Abstract][Full Text] [Related]
17. Enhancement by N-methylformamide of the effect of ionizing radiation on a human colon tumor xenografted in nude mice. Dexter DL; Lee ES; Bliven SF; Glicksman AS; Leith JT Cancer Res; 1984 Nov; 44(11):4942-6. PubMed ID: 6488157 [TBL] [Abstract][Full Text] [Related]
18. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Hainfeld JF; Dilmanian FA; Zhong Z; Slatkin DN; Kalef-Ezra JA; Smilowitz HM Phys Med Biol; 2010 Jun; 55(11):3045-59. PubMed ID: 20463371 [TBL] [Abstract][Full Text] [Related]
19. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Zhang XD; Wu D; Shen X; Chen J; Sun YM; Liu PX; Liang XJ Biomaterials; 2012 Sep; 33(27):6408-19. PubMed ID: 22681980 [TBL] [Abstract][Full Text] [Related]
20. Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft. Znati CA; Rosenstein M; Boucher Y; Epperly MW; Bloomer WD; Jain RK Cancer Res; 1996 Mar; 56(5):964-68. PubMed ID: 8640786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]