These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 23201732)
1. Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Chen X; Cai K; Fang J; Lai M; Hou Y; Li J; Luo Z; Hu Y; Tang L Colloids Surf B Biointerfaces; 2013 Mar; 103():149-57. PubMed ID: 23201732 [TBL] [Abstract][Full Text] [Related]
2. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Yuan Z; Liu P; Hao Y; Ding Y; Cai K Colloids Surf B Biointerfaces; 2018 Nov; 171():597-605. PubMed ID: 30099296 [TBL] [Abstract][Full Text] [Related]
3. Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion. Zhao L; Hu Y; Xu D; Cai K Colloids Surf B Biointerfaces; 2014 Jul; 119():115-25. PubMed ID: 24880988 [TBL] [Abstract][Full Text] [Related]
4. In vitro bioactivity of different degree of deacetylation chitosan, a potential coating material for titanium implants. Lieder R; Darai M; Thor MB; Ng CH; Einarsson JM; Gudmundsson S; Helgason B; Gaware VS; Másson M; Gíslason J; Orlygsson G; Sigurjónsson OE J Biomed Mater Res A; 2012 Dec; 100(12):3392-9. PubMed ID: 22767519 [TBL] [Abstract][Full Text] [Related]
5. Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film. Bilek O; Fohlerova Z; Hubalek J PLoS One; 2019; 14(3):e0214066. PubMed ID: 30901347 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention. Sutrisno L; Hu Y; Shen X; Li M; Luo Z; Dai L; Wang S; Zhong JL; Cai K Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():95-105. PubMed ID: 29752124 [TBL] [Abstract][Full Text] [Related]
7. Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior. Cai K; Hu Y; Jandt KD J Biomed Mater Res A; 2007 Sep; 82(4):927-35. PubMed ID: 17335030 [TBL] [Abstract][Full Text] [Related]
8. [Primary study on the antibacterial property of silver-loaded nano-titania coatings]. Feng Y; Cao C; Li BE; Liu XY; Dong YQ Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2077-80. PubMed ID: 19080440 [TBL] [Abstract][Full Text] [Related]
9. Surface modification of TiO Lai M; Jin Z; Su Z Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():490-497. PubMed ID: 28183637 [TBL] [Abstract][Full Text] [Related]
10. Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses. Xu D; Yang W; Hu Y; Luo Z; Li J; Hou Y; Liu Y; Cai K Colloids Surf B Biointerfaces; 2013 Oct; 110():225-35. PubMed ID: 23732798 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Liu P; Hao Y; Zhao Y; Yuan Z; Ding Y; Cai K Colloids Surf B Biointerfaces; 2017 Dec; 160():110-116. PubMed ID: 28918187 [TBL] [Abstract][Full Text] [Related]
12. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761 [TBL] [Abstract][Full Text] [Related]
13. In vitro cytotoxicity evaluation of porous TiO₂-Ag antibacterial coatings for human fetal osteoblasts. Necula BS; van Leeuwen JP; Fratila-Apachitei LE; Zaat SA; Apachitei I; Duszczyk J Acta Biomater; 2012 Nov; 8(11):4191-7. PubMed ID: 22813846 [TBL] [Abstract][Full Text] [Related]
14. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564 [TBL] [Abstract][Full Text] [Related]
15. TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Hu Y; Cai K; Luo Z; Xu D; Xie D; Huang Y; Yang W; Liu P Acta Biomater; 2012 Jan; 8(1):439-48. PubMed ID: 22040682 [TBL] [Abstract][Full Text] [Related]
16. N-halamine-based multilayers on titanium substrates for antibacterial application. Tao B; Shen X; Yuan Z; Ran Q; Shen T; Pei Y; Liu J; He Y; Hu Y; Cai K Colloids Surf B Biointerfaces; 2018 Oct; 170():382-392. PubMed ID: 29945050 [TBL] [Abstract][Full Text] [Related]
17. Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates. Chua PH; Neoh KG; Shi Z; Kang ET J Biomed Mater Res A; 2008 Dec; 87(4):1061-74. PubMed ID: 18257066 [TBL] [Abstract][Full Text] [Related]
18. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells. Cai K; Lai M; Yang W; Hu R; Xin R; Liu Q; Sung KL Acta Biomater; 2010 Jun; 6(6):2314-21. PubMed ID: 19963080 [TBL] [Abstract][Full Text] [Related]
19. BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement. Tao B; Deng Y; Song L; Ma W; Qian Y; Lin C; Yuan Z; Lu L; Chen M; Yang X; Cai K Colloids Surf B Biointerfaces; 2019 May; 177():242-252. PubMed ID: 30763789 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Mei S; Wang H; Wang W; Tong L; Pan H; Ruan C; Ma Q; Liu M; Yang H; Zhang L; Cheng Y; Zhang Y; Zhao L; Chu PK Biomaterials; 2014 May; 35(14):4255-65. PubMed ID: 24565524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]