These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
677 related articles for article (PubMed ID: 23201739)
1. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. He F; Li J; Ye J Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
3. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure. He F; Chen Y; Li J; Lin B; Ouyang Y; Yu B; Xia Y; Yu B; Ye J J Biomed Mater Res A; 2015 Apr; 103(4):1312-24. PubMed ID: 24890626 [TBL] [Abstract][Full Text] [Related]
4. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Qi X; Ye J; Wang Y J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921 [TBL] [Abstract][Full Text] [Related]
5. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Renno AC; van de Watering FC; Nejadnik MR; Crovace MC; Zanotto ED; Wolke JG; Jansen JA; van den Beucken JJ Acta Biomater; 2013 Mar; 9(3):5728-39. PubMed ID: 23159565 [TBL] [Abstract][Full Text] [Related]
7. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
8. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof. Huang Y; Ren J; Ren T; Gu S; Tan Q; Zhang L; Lv K; Pan K; Jiang X J Biomed Mater Res A; 2010 Dec; 95(4):993-1003. PubMed ID: 20872750 [TBL] [Abstract][Full Text] [Related]
9. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related]
10. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919 [TBL] [Abstract][Full Text] [Related]
11. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
12. The osteogenic properties of CaP/silk composite scaffolds. Zhang Y; Wu C; Friis T; Xiao Y Biomaterials; 2010 Apr; 31(10):2848-56. PubMed ID: 20071025 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
14. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Liao H; Walboomers XF; Habraken WJ; Zhang Z; Li Y; Grijpma DW; Mikos AG; Wolke JG; Jansen JA Acta Biomater; 2011 Apr; 7(4):1752-9. PubMed ID: 21185953 [TBL] [Abstract][Full Text] [Related]
15. Calcium phosphate cement scaffolds with PLGA fibers. Vasconcellos LA; dos Santos LA Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1032-40. PubMed ID: 23827539 [TBL] [Abstract][Full Text] [Related]
16. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
18. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Wang C; Lin K; Chang J; Sun J Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715 [TBL] [Abstract][Full Text] [Related]
19. Maxillary sinus floor augmentation with injectable calcium phosphate cements: a pre-clinical study in sheep. Hoekstra JW; Klijn RJ; Meijer GJ; van den Beucken JJ; Jansen JA Clin Oral Implants Res; 2013 Feb; 24(2):210-6. PubMed ID: 22335192 [TBL] [Abstract][Full Text] [Related]
20. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. Fei Z; Hu Y; Wu D; Wu H; Lu R; Bai J; Song H J Mater Sci Mater Med; 2008 Mar; 19(3):1109-16. PubMed ID: 17701313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]