These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 23201776)
1. A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Niranjan R; Koushik C; Saravanan S; Moorthi A; Vairamani M; Selvamurugan N Int J Biol Macromol; 2013 Mar; 54():24-9. PubMed ID: 23201776 [TBL] [Abstract][Full Text] [Related]
2. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S; Saravanan S; Sastry TP; Selvamurugan N J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678 [TBL] [Abstract][Full Text] [Related]
3. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. Dessì M; Borzacchiello A; Mohamed TH; Abdel-Fattah WI; Ambrosio L J Biomed Mater Res A; 2013 Oct; 101(10):2984-93. PubMed ID: 23873836 [TBL] [Abstract][Full Text] [Related]
4. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Tripathi A; Saravanan S; Pattnaik S; Moorthi A; Partridge NC; Selvamurugan N Int J Biol Macromol; 2012 Jan; 50(1):294-9. PubMed ID: 22123094 [TBL] [Abstract][Full Text] [Related]
5. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Coimbra P; Ferreira P; de Sousa HC; Batista P; Rodrigues MA; Correia IJ; Gil MH Int J Biol Macromol; 2011 Jan; 48(1):112-8. PubMed ID: 20955729 [TBL] [Abstract][Full Text] [Related]
6. Enrichment of thermosensitive chitosan hydrogels with glycerol and alkaline phosphatase for bone tissue engineering applications. Douglas TE; Krok-Borkowicz M; Macuda A; Pietryga K; Pamuła E Acta Bioeng Biomech; 2016; 18(2):51-7. PubMed ID: 27405261 [TBL] [Abstract][Full Text] [Related]
7. Injectable chitosan-based hydrogel for implantable drug delivery: body response and induced variations of structure and composition. Sun J; Jiang G; Qiu T; Wang Y; Zhang K; Ding F J Biomed Mater Res A; 2010 Dec; 95(4):1019-27. PubMed ID: 20872751 [TBL] [Abstract][Full Text] [Related]
8. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Pattnaik S; Nethala S; Tripathi A; Saravanan S; Moorthi A; Selvamurugan N Int J Biol Macromol; 2011 Dec; 49(5):1167-72. PubMed ID: 21968009 [TBL] [Abstract][Full Text] [Related]
9. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Tsao CT; Chang CH; Lin YY; Wu MF; Wang JL; Han JL; Hsieh KH Carbohydr Res; 2010 Aug; 345(12):1774-80. PubMed ID: 20598293 [TBL] [Abstract][Full Text] [Related]
11. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Kim S; Nishimoto SK; Bumgardner JD; Haggard WO; Gaber MW; Yang Y Biomaterials; 2010 May; 31(14):4157-66. PubMed ID: 20185170 [TBL] [Abstract][Full Text] [Related]
12. Injectable thermosensitive chitosan/β-glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Ding K; Yang Z; Zhang YL; Xu JZ Cell Biol Int; 2013 Sep; 37(9):977-87. PubMed ID: 23620126 [TBL] [Abstract][Full Text] [Related]
13. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
14. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery. Tang Y; Du Y; Li Y; Wang X; Hu X J Biomed Mater Res A; 2009 Dec; 91(4):953-63. PubMed ID: 19097146 [TBL] [Abstract][Full Text] [Related]
15. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Madhumathi K; Shalumon KT; Rani VV; Tamura H; Furuike T; Selvamurugan N; Nair SV; Jayakumar R Int J Biol Macromol; 2009 Jul; 45(1):12-5. PubMed ID: 19447253 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of a novel supermagnetic iron oxide nanocomposite hydrogel based on graft copolymerization of poly((2-dimethylamino)ethyl methacrylate) onto salep for controlled release of drug. Bardajee GR; Hooshyar Z; Asli MJ; Shahidi FE; Dianatnejad N Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():277-86. PubMed ID: 24433913 [TBL] [Abstract][Full Text] [Related]
17. Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity. Abdel-Bar HM; Abdel-Reheem AY; Osman R; Awad GA; Mortada N Int J Pharm; 2014 Dec; 477(1-2):623-30. PubMed ID: 25445973 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Ding F; Nie Z; Deng H; Xiao L; Du Y; Shi X Carbohydr Polym; 2013 Nov; 98(2):1547-52. PubMed ID: 24053838 [TBL] [Abstract][Full Text] [Related]
19. Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Ngoenkam J; Faikrua A; Yasothornsrikul S; Viyoch J Int J Pharm; 2010 May; 391(1-2):115-24. PubMed ID: 20206248 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro. Yan J; Yang L; Wang G; Xiao Y; Zhang B; Qi N J Biomater Appl; 2010 Mar; 24(7):625-37. PubMed ID: 19451182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]