These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 23201778)

  • 1. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation.
    Subashchandrabose SR; Ramakrishnan B; Megharaj M; Venkateswarlu K; Naidu R
    Environ Int; 2013 Jan; 51():59-72. PubMed ID: 23201778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants.
    Touliabah HE; El-Sheekh MM; Ismail MM; El-Kassas H
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview.
    Ghaffar I; Hussain A; Hasan A; Deepanraj B
    Chemosphere; 2023 Apr; 320():137921. PubMed ID: 36682632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollutant toxicology with respect to microalgae and cyanobacteria.
    Lu T; Zhang Q; Zhang Z; Hu B; Chen J; Chen J; Qian H
    J Environ Sci (China); 2021 Jan; 99():175-186. PubMed ID: 33183695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential.
    Subashchandrabose SR; Ramakrishnan B; Megharaj M; Venkateswarlu K; Naidu R
    Biotechnol Adv; 2011; 29(6):896-907. PubMed ID: 21801829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Abiotic Factors on Abundance and Photosynthetic Performance of Airborne Cyanobacteria and Microalgae Isolated from the Southern Baltic Sea Region.
    Wiśniewska K; Śliwińska-Wilczewska S; Lewandowska A; Konik M
    Cells; 2021 Jan; 10(1):. PubMed ID: 33429949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota.
    Perera I; Subashchandrabose SR; Venkateswarlu K; Naidu R; Megharaj M
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7351-7363. PubMed ID: 29982925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Update on the cometabolism of organic pollutants by bacteria.
    Nzila A
    Environ Pollut; 2013 Jul; 178():474-82. PubMed ID: 23570949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of filamentous cyanobacteria for biodegradation of organic pollutants.
    Kuritz T; Wolk CP
    Appl Environ Microbiol; 1995 Jan; 61(1):234-8. PubMed ID: 7534052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of organic pollutants by halophilic bacteria and archaea.
    Le Borgne S; Paniagua D; Vazquez-Duhalt R
    J Mol Microbiol Biotechnol; 2008; 15(2-3):74-92. PubMed ID: 18685264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Uptake, transformation and degradation of organic pollutants in transgenic plants].
    Hu GZ; Wang YF; He YK
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):340-6. PubMed ID: 16121003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation approaches for organic pollutants: a critical perspective.
    Megharaj M; Ramakrishnan B; Venkateswarlu K; Sethunathan N; Naidu R
    Environ Int; 2011 Nov; 37(8):1362-75. PubMed ID: 21722961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprospecting microalgae as potential sources of "green energy"--challenges and perspectives (review).
    Ratha SK; Prasanna R
    Prikl Biokhim Mikrobiol; 2012; 48(2):133-49. PubMed ID: 22586907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing environmental organic pollutants with bioremediation and phytoremediation.
    Kang JW
    Biotechnol Lett; 2014 Jun; 36(6):1129-39. PubMed ID: 24563299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.
    Kim S; Park JE; Cho YB; Hwang SJ
    Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and Ecological Aspects of Chlorella sorokiniana (Trebouxiophyceae) Under Photoautotrophic and Mixotrophic Conditions.
    Marchello AE; Dos Santos AC; Lombardi AT; de Souza CWO; Montanhim GC
    Microb Ecol; 2018 Oct; 76(3):791-800. PubMed ID: 29520451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.
    Wijffels RH; Kruse O; Hellingwerf KJ
    Curr Opin Biotechnol; 2013 Jun; 24(3):405-13. PubMed ID: 23647970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy conservation in photosynthetic microorganisms.
    Okada K; Fujiwara S; Tsuzuki M
    J Gen Appl Microbiol; 2020 Jun; 66(2):59-65. PubMed ID: 32336724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions.
    Souza LD; Simioni C; Bouzon ZL; Schneider RC; Gressler P; Miotto MC; Rossi MJ; Rörig LR
    Protoplasma; 2017 May; 254(3):1385-1398. PubMed ID: 27696020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants.
    Dubey S; Chen CW; Haldar D; Tambat VS; Kumar P; Tiwari A; Singhania RR; Dong CD; Patel AK
    Environ Pollut; 2023 Jan; 317():120840. PubMed ID: 36496067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.