These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 23201778)

  • 21. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants.
    Dubey S; Chen CW; Haldar D; Tambat VS; Kumar P; Tiwari A; Singhania RR; Dong CD; Patel AK
    Environ Pollut; 2023 Jan; 317():120840. PubMed ID: 36496067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Healthy environments for healthy people: bioremediation today and tomorrow.
    Bonaventura C; Johnson FM
    Environ Health Perspect; 1997 Feb; 105 Suppl 1(Suppl 1):5-20. PubMed ID: 9114274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical biomarkers in algae and marine pollution: a review.
    Torres MA; Barros MP; Campos SC; Pinto E; Rajamani S; Sayre RT; Colepicolo P
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):1-15. PubMed ID: 18599121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation of microalgae to lindane: a new approach for bioremediation.
    González R; García-Balboa C; Rouco M; Lopez-Rodas V; Costas E
    Aquat Toxicol; 2012 Mar; 109():25-32. PubMed ID: 22204986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From light capture to metabolic needs, oxygenic photosynthesis is an ever-expanding field of study in plants, algae and cyanobacteria.
    Cardol P; Krieger-Liszkay A
    Physiol Plant; 2017 Sep; 161(1):2-5. PubMed ID: 28547911
    [No Abstract]   [Full Text] [Related]  

  • 26. THE BIOTRANSFORMATION, BIODEGRADATION, AND BIOREMEDIATION OF ORGANIC COMPOUNDS BY MICROALGAE(1).
    Ghasemi Y; Rasoul-Amini S; Fotooh-Abadi E
    J Phycol; 2011 Oct; 47(5):969-80. PubMed ID: 27020178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health.
    Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M
    Crit Rev Biotechnol; 2019 Dec; 39(8):981-998. PubMed ID: 31455102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How do freshwater microalgae and cyanobacteria respond to antibiotics?
    Le VV; Tran QG; Ko SR; Lee SA; Oh HM; Kim HS; Ahn CY
    Crit Rev Biotechnol; 2023 Mar; 43(2):191-211. PubMed ID: 35189751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model based analysis of carbon fluxes within microalgae-bacteria flocs using respirometric-titrimetric data.
    Manhaeghe D; Allosserie A; Rousseau DPL; Van Hulle SWH
    Sci Total Environ; 2021 Aug; 784():147048. PubMed ID: 33894600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.
    Gill RT; Harbottle MJ; Smith JWN; Thornton SF
    Chemosphere; 2014 Jul; 107():31-42. PubMed ID: 24875868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic relation of cyanobacteria to aromatic compounds.
    Żyszka-Haberecht B; Niemczyk E; Lipok J
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1167-1178. PubMed ID: 30580382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges.
    Renuka N; Guldhe A; Prasanna R; Singh P; Bux F
    Biotechnol Adv; 2018; 36(4):1255-1273. PubMed ID: 29673972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into the degradation of synthetic pollutants in contaminated environments.
    Bhatt P; Gangola S; Bhandari G; Zhang W; Maithani D; Mishra S; Chen S
    Chemosphere; 2021 Apr; 268():128827. PubMed ID: 33162154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.
    Kästner M; Miltner A
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3433-49. PubMed ID: 26921182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current states and challenges of salt-affected soil remediation by cyanobacteria.
    Li H; Zhao Q; Huang H
    Sci Total Environ; 2019 Jun; 669():258-272. PubMed ID: 30878933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals.
    Alvarez A; Saez JM; Davila Costa JS; Colin VL; Fuentes MS; Cuozzo SA; Benimeli CS; Polti MA; Amoroso MJ
    Chemosphere; 2017 Jan; 166():41-62. PubMed ID: 27684437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Relationship between photosynthetic activity and assimilation of organic matter in marine plankton mixotrophic algae--the possibility of different metabolic strategies].
    Il'iash LV
    Zh Obshch Biol; 2002; 63(5):407-17. PubMed ID: 12395752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Biodegradation of toxic organic pollutants by Bacillus sp. LY with heterotrophic nitrogen removal ability].
    Zhao J; Lü J; He YL; Jin Q; Zhang WY; He X
    Huan Jing Ke Xue; 2007 Dec; 28(12):2838-42. PubMed ID: 18290447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioremediation of organic pollutants: a mini review on current and critical strategies for wastewater treatment.
    Haripriyan U; Gopinath KP; Arun J; Govarthanan M
    Arch Microbiol; 2022 Apr; 204(5):286. PubMed ID: 35478273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.