These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 23201991)
1. Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems. Zhang Z; Zheng J; Wu H; Wang W; Wang B; Liu H Sensors (Basel); 2012 Sep; 12(10):13167-84. PubMed ID: 23201991 [TBL] [Abstract][Full Text] [Related]
2. Low power wireless acquisition module for wearable health monitoring systems. Figueiredo CP; Becher K; Hoffmann KP; Mendes PM Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():704-7. PubMed ID: 21095668 [TBL] [Abstract][Full Text] [Related]
3. Estimating actigraphy from motion artifacts in ECG and respiratory effort signals. Fonseca P; Aarts RM; Long X; Rolink J; Leonhardt S Physiol Meas; 2016 Jan; 37(1):67-82. PubMed ID: 26641863 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Breathing Pattern Detection during Running Using Wearable Sensors. Harbour E; Lasshofer M; Genitrini M; Schwameder H Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451048 [TBL] [Abstract][Full Text] [Related]
5. A low-power multi-modal body sensor network with application to epileptic seizure monitoring. Altini M; Del Din S; Patel S; Schachter S; Penders J; Bonato P Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1806-9. PubMed ID: 22254679 [TBL] [Abstract][Full Text] [Related]
6. Towards estimation of respiratory muscle effort with respiratory inductance plethysmography signals and complementary ensemble empirical mode decomposition. Chen YC; Hsiao TC Med Biol Eng Comput; 2018 Jul; 56(7):1293-1303. PubMed ID: 29280093 [TBL] [Abstract][Full Text] [Related]
7. Reference-Free Adjustment of Respiratory Inductance Plethysmography for Measurements during Physical Exercise. Leutheuser H; Heyde C; Roecker K; Gollhofer A; Eskofier BM IEEE Trans Biomed Eng; 2017 Dec; 64(12):2836-2846. PubMed ID: 28278451 [TBL] [Abstract][Full Text] [Related]
8. Application of long-period-grating sensors to respiratory plethysmography. Allsop T; Carroll K; Lloyd G; Webb DJ; Miller M; Bennion I J Biomed Opt; 2007; 12(6):064003. PubMed ID: 18163819 [TBL] [Abstract][Full Text] [Related]
9. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait. Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937 [TBL] [Abstract][Full Text] [Related]
10. A wearable mobihealth care system supporting real-time diagnosis and alarm. Zheng JW; Zhang ZB; Wu TH; Zhang Y Med Biol Eng Comput; 2007 Sep; 45(9):877-85. PubMed ID: 17619091 [TBL] [Abstract][Full Text] [Related]
11. Identification of cigarette smoke inhalations from wearable sensor data using a Support Vector Machine classifier. Lopez-Meyer P; Tiffany S; Sazonov E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4050-3. PubMed ID: 23366817 [TBL] [Abstract][Full Text] [Related]
12. A wearable respiration monitoring system based on digital respiratory inductive plethysmography. Wu D; Wang L; Zhang YT; Huang BY; Wang B; Lin SJ; Xu XW Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4844-7. PubMed ID: 19963862 [TBL] [Abstract][Full Text] [Related]
13. Using the Lomb periodogram for non-contact estimation of respiration rates. Vasu V; Fox N; Heneghan C; Sezer S Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2407-10. PubMed ID: 21095694 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal monitoring of patients with Parkinson's disease via wearable sensor technology in the home setting. Patel S; Chen BR; Mancinelli C; Paganoni S; Shih L; Welsh M; Dy J; Bonato P Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1552-5. PubMed ID: 22254617 [TBL] [Abstract][Full Text] [Related]
15. [Design of a digital respiratory inductive plethysmography system]. Zhang ZB; Wang WD; Wu H; Li KY; Ang Q Zhongguo Yi Liao Qi Xie Za Zhi; 2007 May; 31(3):179-81. PubMed ID: 17672362 [TBL] [Abstract][Full Text] [Related]
16. Assessment of an alternative calibration technique to record breathing pattern and its variability with respiratory inductive plethysmography. Lo WLA; Huang DF J Clin Monit Comput; 2017 Aug; 31(4):755-764. PubMed ID: 27289525 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of respiratory inductive plethysmographic cross-sectional areas. Watson HL; Poole DA; Sackner MA J Appl Physiol (1985); 1988 Jul; 65(1):306-8. PubMed ID: 3403473 [TBL] [Abstract][Full Text] [Related]
18. Low energy wearable body-sensor-network. Yoo HJ; Cho N; Yoo J Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3209-12. PubMed ID: 19964057 [TBL] [Abstract][Full Text] [Related]
19. IoT Based Heart Activity Monitoring Using Inductive Sensors. Brezulianu A; Geman O; Zbancioc MD; Hagan M; Aghion C; Hemanth DJ; Son LH Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357390 [TBL] [Abstract][Full Text] [Related]
20. Validation of a new respiratory inductive plethysmograph. Leino K; Nunes S; Valta P; Takala J Acta Anaesthesiol Scand; 2001 Jan; 45(1):104-11. PubMed ID: 11152021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]