These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23201993)

  • 1. An adaptive altitude information fusion method for autonomous landing processes of small unmanned aerial rotorcraft.
    Lei X; Li J
    Sensors (Basel); 2012 Sep; 12(10):13212-24. PubMed ID: 23201993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous Landing of Quadrotor Unmanned Aerial Vehicles Based on Multi-Level Marker and Linear Active Disturbance Reject Control.
    Lv M; Fan B; Fang J; Wang J
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.
    Lin L; Yang Y; Cheng H; Chen X
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Features of Invariant Extended Kalman Filter Applied to Unmanned Aerial Vehicle Navigation.
    Ko NY; Youn W; Choi IH; Song G; Kim TS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30158506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Unscented Kalman Filter for Target Tacking with Time-Varying Noise Covariance Based on Multi-Sensor Information Fusion.
    Wang D; Zhang H; Ge B
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned aerial vehicle for transmission line inspection using an extended Kalman filter with colored electromagnetic interference.
    da Silva MF; Honório LM; Marcato ALM; Vidal VF; Santos MF
    ISA Trans; 2020 May; 100():322-333. PubMed ID: 31759684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radar Target Tracking for Unmanned Surface Vehicle Based on Square Root Sage-Husa Adaptive Robust Kalman Filter.
    Qiao S; Fan Y; Wang G; Mu D; He Z
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Attitude Determination System Aided by Polarization Sensor.
    Zhi W; Chu J; Li J; Wang Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29315256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fuzzy-Based System for Autonomous Unmanned Aerial Vehicle Ship Deck Landing.
    Tsitses I; Zacharia P; Xidias E; Papoutsidakis M
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor Fusion Algorithm Using a Model-Based Kalman Filter for the Position and Attitude Estimation of Precision Aerial Delivery Systems.
    Garcia-Huerta RA; González-Jiménez LE; Villalon-Turrubiates IE
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32933223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Landing of Unmanned Aerial Vehicles via Wireless Positioning System with Pseudo-Conical Scanning.
    Iliev I; Nachev I
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Linear Quadratic Attitude Tracking Control of a Quadrotor UAV Based on IMU Sensor Data Fusion.
    Koksal N; Jalalmaab M; Fidan B
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
    Outamazirt F; Li F; Yan L; Nemra A
    Sensors (Basel); 2014 Sep; 14(9):17600-20. PubMed ID: 25244587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion.
    Du H; Wang W; Xu C; Xiao R; Sun C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UAV Swarm Navigation Using Dynamic Adaptive Kalman Filter and Network Navigation.
    Zhang J; Zhou W; Wang X
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wind Estimation Method with an Unmanned Rotorcraft for Environmental Monitoring Tasks.
    Wang JY; Luo B; Zeng M; Meng QH
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control System for Vertical Take-Off and Landing Vehicle's Adaptive Landing Based on Multi-Sensor Data Fusion.
    Tang H; Zhang D; Gan Z
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EKF-Based Parameter Identification of Multi-Rotor Unmanned Aerial VehiclesModels.
    Munguía R; Urzua S; Grau A
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31561517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.
    Nguyen PH; Arsalan M; Koo JH; Naqvi RA; Truong NQ; Park KR
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAV Landing Based on the Optical Flow Videonavigation.
    Miller B; Miller A; Popov A; Stepanyan K
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.