These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 23202017)
1. Spectral regression based fault feature extraction for bearing accelerometer sensor signals. Xia Z; Xia S; Wan L; Cai S Sensors (Basel); 2012 Oct; 12(10):13694-719. PubMed ID: 23202017 [TBL] [Abstract][Full Text] [Related]
2. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory. Li J; Cao Y; Ying Y; Li S PLoS One; 2016; 11(12):e0167587. PubMed ID: 28036329 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis Methodology Based on Deep Feature Learning for Fault Identification in Metallic, Hybrid and Ceramic Bearings. Saucedo-Dorantes JJ; Arellano-Espitia F; Delgado-Prieto M; Osornio-Rios RA Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502720 [TBL] [Abstract][Full Text] [Related]
4. A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals. Altaf M; Akram T; Khan MA; Iqbal M; Ch MMI; Hsu CH Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271159 [TBL] [Abstract][Full Text] [Related]
5. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform. Yu X; Ding E; Chen C; Liu X; Li L Sensors (Basel); 2015 Nov; 15(11):27869-93. PubMed ID: 26540059 [TBL] [Abstract][Full Text] [Related]
6. Vibration sensor-based bearing fault diagnosis using ellipsoid-ARTMAP and differential evolution algorithms. Liu C; Wang G; Xie Q; Zhang Y Sensors (Basel); 2014 Jun; 14(6):10598-618. PubMed ID: 24936949 [TBL] [Abstract][Full Text] [Related]
7. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing. Lu C; Wang Y; Ragulskis M; Cheng Y PLoS One; 2016; 11(10):e0164111. PubMed ID: 27711246 [TBL] [Abstract][Full Text] [Related]
8. Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis. Peng B; Wan S; Bi Y; Xue B; Zhang M IEEE Trans Cybern; 2021 Oct; 51(10):4909-4923. PubMed ID: 33237874 [TBL] [Abstract][Full Text] [Related]
9. Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals. Wang Z; Yao L; Chen G; Ding J ISA Trans; 2021 Aug; 114():470-484. PubMed ID: 33454055 [TBL] [Abstract][Full Text] [Related]
10. Feature generation using genetic programming with application to fault classification. Guo H; Jack LB; Nandi AK IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):89-99. PubMed ID: 15719936 [TBL] [Abstract][Full Text] [Related]
11. Fault detection and classification in chemical processes based on neural networks with feature extraction. Zhou Y; Hahn J; Mannan MS ISA Trans; 2003 Oct; 42(4):651-64. PubMed ID: 14582888 [TBL] [Abstract][Full Text] [Related]
12. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns. Kuncan M; Kaplan K; Mi Naz MR; Kaya Y; Ertunç HM ISA Trans; 2020 May; 100():346-357. PubMed ID: 31732141 [TBL] [Abstract][Full Text] [Related]
13. Application Combining VMD and ResNet101 in Intelligent Diagnosis of Motor Faults. Lin SL Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577272 [TBL] [Abstract][Full Text] [Related]
14. Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet. Lin SL Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833542 [TBL] [Abstract][Full Text] [Related]
15. Quantitative diagnosis for bearing faults by improving ensemble empirical mode decomposition. Hoseinzadeh MS; Khadem SE; Sadooghi MS ISA Trans; 2018 Dec; 83():261-275. PubMed ID: 30268438 [TBL] [Abstract][Full Text] [Related]
16. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis. Sohaib M; Kim CH; Kim JM Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232908 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Gao L; Bourke AK; Nelson J Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448 [TBL] [Abstract][Full Text] [Related]
18. A feature extraction method based on information theory for fault diagnosis of reciprocating machinery. Wang H; Chen P Sensors (Basel); 2009; 9(4):2415-36. PubMed ID: 22574021 [TBL] [Abstract][Full Text] [Related]
19. Nonstationary feature extraction based on stochastic resonance and its application in rolling bearing fault diagnosis under strong noise background. Wang Z; Yang J; Guo Y; Gong T; Shan Z Rev Sci Instrum; 2023 Jan; 94(1):015110. PubMed ID: 36725570 [TBL] [Abstract][Full Text] [Related]
20. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Li C; Sánchez RV; Zurita G; Cerrada M; Cabrera D Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]