BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23202031)

  • 1. Physically-based reduced order modelling of a uni-axial polysilicon MEMS accelerometer.
    Ghisi A; Mariani S; Corigliano A; Zerbini S
    Sensors (Basel); 2012 Oct; 12(10):13985-4003. PubMed ID: 23202031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-scale simulation of drop-induced failure of polysilicon MEMS sensors.
    Mariani S; Ghisi A; Corigliano A; Martini R; Simoni B
    Sensors (Basel); 2011; 11(5):4972-89. PubMed ID: 22163885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscosity-density sensor with resonant torsional paddle for direct detection in liquid.
    Li H; Wang J; Li X; Chen D
    IET Nanobiotechnol; 2011 Dec; 5(4):121-5. PubMed ID: 22149867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor.
    Hasenkamp W; Forchelet D; Pataky K; Villard J; Van Lintel H; Bertsch A; Wang Q; Renaud P
    Biomed Microdevices; 2012 Oct; 14(5):819-28. PubMed ID: 22639233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandwidth optimization design of a multi degree of freedom MEMS gyroscope.
    Si C; Han G; Ning J; Yang F
    Sensors (Basel); 2013 Aug; 13(8):10550-60. PubMed ID: 23948872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.
    Liu J; Li M; Qin L; Liu J
    Sensors (Basel); 2013 Aug; 13(8):10844-55. PubMed ID: 23959243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-parametric Bayesian human motion recognition using a single MEMS tri-axial accelerometer.
    Ahmed ME; Song JB
    Sensors (Basel); 2012 Sep; 12(10):13185-211. PubMed ID: 23201992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.
    Khir MH; Qu P; Qu H
    Sensors (Basel); 2011; 11(8):7892-907. PubMed ID: 22164052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEMS capacitive accelerometer-based middle ear microphone.
    Young DJ; Zurcher MA; Semaan M; Megerian CA; Ko WH
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3283-92. PubMed ID: 22542650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.
    Benevicius V; Ostasevicius V; Gaidys R
    Sensors (Basel); 2013 Aug; 13(9):11184-95. PubMed ID: 23974151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and assembly of MEMS accelerometer-based heart monitoring device with simplified, one step placement.
    Tjulkins F; Nguyen AT; Andreassen E; Aasmundtveit K; Hoivik N; Hoff L; Halvorsen PS; Grymyr OJ; Imenes K
    J Med Eng Technol; 2015 Jan; 39(1):69-74. PubMed ID: 25429874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel MEMS stiffness sensor for in-vivo tissue characterization measurement.
    Peng P; Sezen AS; Rajamani R; Erdman AG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6640-3. PubMed ID: 19963926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic algorithm for the design of electro-mechanical sigma delta modulator MEMS sensors.
    Wilcock R; Kraft M
    Sensors (Basel); 2011; 11(10):9217-32. PubMed ID: 22163691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of calibration methods for accelerometers used in human motion analysis.
    Nez A; Fradet L; Laguillaumie P; Monnet T; Lacouture P
    Med Eng Phys; 2016 Nov; 38(11):1289-1299. PubMed ID: 27590920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators.
    Li X; Zhang Z; Qin S; Wang T; Liu F; Qiu M; Su Y
    Appl Opt; 2009 Sep; 48(25):F90-4. PubMed ID: 19724320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance piezoresistive MEMS strain sensor with low thermal sensitivity.
    Mohammed AA; Moussa WA; Lou E
    Sensors (Basel); 2011; 11(2):1819-46. PubMed ID: 22319384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative technology-based approach of microelectromechanical systems (MEMS) for biosensing applications.
    Nicu L; Alava T; Leichle T; Saya D; Pourciel JB; Mathieu F; Soyer C; Remiens D; Ayela C; Haupt K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4475-8. PubMed ID: 23366921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluidics-based impact sensor.
    Takahashi D; Hara K; Okano T; Suzuki H
    PLoS One; 2018; 13(4):e0195741. PubMed ID: 29634750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parylene-based encapsulated fluid MEMS sensors.
    Meng E; Gutierrez C
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1039-41. PubMed ID: 19964947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices.
    Gesing AL; Alves FDP; Paul S; Cordioli JA
    Sci Rep; 2018 Mar; 8(1):3920. PubMed ID: 29500435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.