These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23202103)

  • 1. Single-step polarization holographic method for programmable microlens arrays.
    Ruiz U; Provenzano C; Pagliusi P; Cipparrone G
    Opt Lett; 2012 Dec; 37(23):4958-60. PubMed ID: 23202103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid crystal microlens arrays recorded by polarization holography.
    Ruiz U; Pagliusi P; Provenzano C; Lepera E; Cipparrone G
    Appl Opt; 2015 Apr; 54(11):3303-7. PubMed ID: 25967317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence.
    Cipparrone G; Pagliusi P; Provenzano C; Shibaev VP
    J Phys Chem B; 2010 Jul; 114(27):8900-4. PubMed ID: 20568800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory.
    Ogiwara A; Watanabe M
    Appl Opt; 2012 Jul; 51(21):5168-77. PubMed ID: 22858959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.
    Yu JH; Chen HS; Chen PJ; Song KH; Noh SC; Lee JM; Ren H; Lin YH; Lee SH
    Opt Express; 2015 Jun; 23(13):17337-44. PubMed ID: 26191743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.
    Provenzano C; Pagliusi P; Cipparrone G; Royes J; Piñol M; Oriol L
    J Phys Chem B; 2014 Oct; 118(40):11849-54. PubMed ID: 25187982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal.
    Ogiwara A; Watanabe M; Moriwaki R
    Opt Lett; 2013 Apr; 38(7):1158-60. PubMed ID: 23546276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of anisotropic diffraction in holographic polymer-dispersed liquid crystal memory.
    Ogiwara A; Watanabe M; Moriwaki R
    Appl Opt; 2013 Sep; 52(26):6529-36. PubMed ID: 24085129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties.
    Jacot-Descombes L; Cadarso VJ; Schleunitz A; Grützner S; Klein JJ; Brugger J; Schift H; Grützner G
    Opt Express; 2015 Sep; 23(19):25365-76. PubMed ID: 26406732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy.
    Nikolova L; Todorov T; Ivanov M; Andruzzi F; Hvilsted S; Ramanujam PS
    Appl Opt; 1996 Jul; 35(20):3835-40. PubMed ID: 21102782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical image encoding based on digital holographic recording on polarization state of vector wave.
    Lin C; Shen X; Xu Q
    Appl Opt; 2013 Oct; 52(28):6931-9. PubMed ID: 24085207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence.
    Todorov T; Nikolova L; Tomova N
    Appl Opt; 1984 Dec; 23(23):4309-12. PubMed ID: 18213314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor.
    Zhao L; Bai N; Li X; Ong LS; Fang ZP; Asundi AK
    Appl Opt; 2006 Jan; 45(1):90-4. PubMed ID: 16422324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Polarization-Sensitive Materials for Polarization Holography.
    Zhai Y; Cao L; Liu Y; Tan X
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-optical controlling of the focal intensity of a liquid crystal polymer microlens array.
    Huang SY; Tung TC; Jau HC; Liu JH; Fuh AY
    Appl Opt; 2011 Oct; 50(30):5883-8. PubMed ID: 22015416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable long focal length microlens based on thermal expansion.
    Hu Y; Xiong Y; Chen X; Bai H; Tian Y; Liu G
    Appl Opt; 2018 May; 57(15):4277-4282. PubMed ID: 29791406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and stable recording of birefringence and holographic gratings in an azo-polymethacrylate using a single nanosecond light pulse.
    Rodríguez FJ; Sánchez C; Villacampa B; Alcalá R; Cases R; Millaruelo M; Oriol L
    J Chem Phys; 2005 Nov; 123(20):204706. PubMed ID: 16351292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Three-Dimensional Printing of Optically Smooth Microlens Arrays by Oscillation-Assisted Digital Light Processing.
    Yuan C; Kowsari K; Panjwani S; Chen Z; Wang D; Zhang B; Ng CJ; Alvarado PVY; Ge Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40662-40668. PubMed ID: 31589018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.
    Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.