These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23202166)

  • 1. Intelligent predictor of energy expenditure with the use of patch-type sensor module.
    Li M; Kwak KC; Kim YT
    Sensors (Basel); 2012 Oct; 12(11):14382-96. PubMed ID: 23202166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Energy Expenditure Using a Patch-Type Sensor Module with an Incremental Radial Basis Function Neural Network.
    Li M; Kwak KC; Kim YT
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure during walking and jogging.
    Greiwe JS; Kohrt WM
    J Sports Med Phys Fitness; 2000 Dec; 40(4):297-302. PubMed ID: 11296999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure.
    de Müllenheim PY; Chaudru S; Emily M; Gernigon M; Mahé G; Bickert S; Prioux J; Noury-Desvaux B; Le Faucheur A
    J Sci Med Sport; 2018 Feb; 21(2):166-172. PubMed ID: 29110991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Based Optimal Smart Shoes Sensor Selection for Energy Expenditure and Heart Rate Estimation.
    Eom H; Roh J; Hariyani YS; Baek S; Lee S; Kim S; Park C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy expenditure of walking and running: comparison with prediction equations.
    Hall C; Figueroa A; Fernhall B; Kanaley JA
    Med Sci Sports Exerc; 2004 Dec; 36(12):2128-34. PubMed ID: 15570150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Heart Rate, Energy Expenditure, and Physical Performance With a Wrist Photoplethysmographic Device During Running.
    Parak J; Uuskoski M; Machek J; Korhonen I
    JMIR Mhealth Uhealth; 2017 Jul; 5(7):e97. PubMed ID: 28743682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of PAEE from combined and separate heart rate and movement models in children.
    Corder K; Brage S; Wareham NJ; Ekelund U
    Med Sci Sports Exerc; 2005 Oct; 37(10):1761-7. PubMed ID: 16260978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Energy Resources Allocation Method of Wireless Sensor Networks for Intelligent Railway Systems.
    Bin S; Sun G
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing energy expenditure regression model using heart rate with reduced training time.
    Xu Z; Zong C; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6566-9. PubMed ID: 26737797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure.
    Sasaki JE; Hickey A; Mavilia M; Tedesco J; John D; Kozey Keadle S; Freedson PS
    J Phys Act Health; 2015 Feb; 12(2):149-54. PubMed ID: 24770438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Incremental Radial Basis Function Network Based on Information Granules and Its Application.
    Lee MW; Kwak KC
    Comput Intell Neurosci; 2016; 2016():3207627. PubMed ID: 27698658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.
    Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C
    J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energy cost of horizontal walking and running in adolescents.
    Walker JL; Murray TD; Jackson AS; Morrow JR; Michaud TJ
    Med Sci Sports Exerc; 1999 Feb; 31(2):311-22. PubMed ID: 10063822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction equations of energy expenditure in Chinese youth based on step frequency during walking and running.
    Sun B; Liu Y; Li JX; Li H; Chen P
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S64-71. PubMed ID: 24527568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.